

ANNA UNIVERSITY, CHENNAI

NON-AUTONOMOUS AFFILIATED COLLEGES

B.E. MECHANICAL (SPECIALISED IN AUTOMOBILE) ENGINEERING

REGULATIONS 2021

CHOICE BASED CREDIT SYSTEM

I TO VIII SEMESTERS (FULL TIME) CURRICULA AND I & II SEMESTER SYLLABI

SEMESTER I

SL. NO.	COURSE	COURSE TITLE	CATE -	PEF	RIODS WEE	S PER K	TOTAL CONTACT	CREDITS		
140.	CODE		GOINT	L	T	Р	PERIODS			
1.	IP3151	Induction Programme	-	-	-	-	-	0		
THEO	RY									
2. HS3152 Professional English - I HSMC 3 0 0 3 3										
3.	MA3151	Matrices and Calculus	BSC	3	1	0	4	4		
4.	PH3151	Engineering Physics	BSC	3	0	0	3	3		
5.	CY3151	Engineering Chemistry	BSC	3	0	0	3	3		
6.	GE3151	Problem Solving and Python Programming	ESC	3	0	0	3	3		
7.	GE3152	தமிழர் மரபு/ Heritage of Tamils	HSMC	1	0	0	1	1		
PRAC	TICAL		•							
7	GE3171	Problem Solving and Python Programming Laboratory	ESC	0	0	4	4	2		
8	BS3171	Physics and Chemistry Laboratory	BSC	0	0	4	4	2		
9	9 GE3172 English Laboratory \$ EEC 0 0 2 2		2	1						
			TOTAL	16	1	10	27	22		

\$ Skill Based Course

SEMESTER II

SL. NO.	COURSE	COURSE TITLE	CATE GORY		WEE		TOTAL CONTACT	CREDITS	
				L	Т	Р	PERIODS		
THEO	RY								
1.	HS3252	Professional English - II	HSMC	2	0	0	2	2	
2.	MA3251 Methods		BSC	3			4	4	
3.			0	3	3				
4.	BE3251	Basic Electrical and Electronics Engineering	ESC	3	0	0	3	3	
5.	GE3251	Engineering Graphics	ESC	2	0	4	6	4	
6.	GE3252	தமிழரும் தொழில்நுட்பமும்	HSMC	1	0	0	1	1	
0.		/ Tamils and Technology							
7.		NCC Credit Course Level 1#	1	2	0	0	2	2	
PRAC	CTICAL								
8.	GE3271	Engineering Practices Laboratory	ESC	0	0	4	4	2	
9.	BE3271	Basic Electrical and Electronics Engineering Laboratory	ESC	0	0	4	4	2	
10.	Communication Laboratory /		EEC	0	0	4	4	2	
			TOTAL	14	1	16	31	23	

^{*} NCC Credit Course level 1 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

SEMESTER III

SL. NO.	COURSE CODE	COURSETITLE	CATE GORY	Р	ERIO R W		TOTAL CONTACT	CREDITS
				L	Т	Р	PERIODS	
THEC	RY							
1.		Transforms and Partial Differential Equations	BSC	3	1	0	4	4
2.		Engineering Mechanics	ESC	3	0	0	3	3
3.		Automotive Engines	PCC	3	0	0	3	3
4.		Mechanics of Solids and Fluids	ESC	3	0	0	3	3
5.		Engineering Materials and Metallurgy	PCC	3	0	0	3	3
6.		Manufacturing Technology	PCC	3	0	0	3	3
PRAC	CTICALS							
7.		Mechanics of Solids and Fluids Laboratory	ESC	0	0	4	4	2
8.		Manufacturing Technology Laboratory	PCC	0	0	4	4	2
9.		Professional Development ^{\$}	EEC	0	0	2	2	1
			TOTAL	18	1	10	29	24

SEMESTER IV

SL. NO.	COURSE	COURSETITLE	CATE GORY		ERIO RWE	_	TOTAL CONTACT	CREDITS
140.	CODE		GOINT	L	Т	Р	PERIODS	
THE	DRY							
1.		Theory of Machines	PCC	3	0	0	3	3
2.		Applied Thermodynamics	PCC	3	0	0	3	3
3.		Hydraulics and Pneumatics	PCC	3	0	0	3	3
4.		Automotive Transmission	PCC	3	0	0	3	3
5.		Automotive Chassis	PCC	3	0	0	3	3
6.		Environmental Sciences and Sustainability	BSC	2	0	0	2	2
7.		NCC Credit Course Level 2#		3	0	0	3	3#
PRA	CTICALS							
8.		Vehicle Components Laboratory	PCC	0	0	4	4	2
9.	Applied Thermodynamics Laboratory		PCC	0	0	4	4	2
			TOTAL	20	0	8	28	21

#NCC Credit Course level2 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

SEMESTER V

S. NO.	COURSE	COURSETITLE	CATE GORY		ERIC ER W	DDS EEK	TOTAL CONTACT	CREDITS
			JOKI	L	Т	Р	PERIODS	
THE	ORY							
1.		Design of Machine Elements	PCC	3	0	0	3	3
2.		Electric and Hybrid Vehicle	PCC	3	0	0	3	3
3.		Automotive Electrical and Electronics	PCC	3	0	0	0	3
4.		Professional Elective I	PEC	3	0	0	3	3
5.		Professional Elective II	PEC	3	0	0	3	3
6.		Professional Elective III	PEC	3	0	0	3	3
7.		Mandatory Course-I&	MC	3	0	0	3	Non-Credit Course
PRA	CTICALS							
8.		Summer Internship*	EEC	0	0	0	0	1
9.		CAE Laboratory	PCC	0	0	4	4	2
10.	10. Automotive Electrical and Electronics Laboratory		PCC	0	0	4	4	2
			TOTAL	21	•	8	29	23

^{*}Two weeks Summer Internship carries one credit and it will be done during IV semester summer vacation and same will be evaluated in V semester.

&Mandatory Course-II a Non-credit Course (Student shall select one course from the list given under MC- I)

SEMESTER VI

S. NO.	COURSE	COURSETITLE	CATE GORY		ERIO ERW		TOTAL CONTACT	CREDITS
			GOIL	L	Т	Р	PERIODS	
THEO	RY							
1.		Heat Transfer	PCC	3	0	0	3	3
2.		Metrology and Measurements	PCC	3	0	0	3	3
3.		Professional Elective IV	PEC	3	0	0	3	3
4.		Professional Elective V	PEC	3	0	0	3	3
5.		Professional Elective VI	PEC	3	0	0	3	3
6.		Open Elective–I*	OEC	3	0	0	3	3
7		Open Elective–II*	OEC	3	0	0	3	3
8		NCC Credit Couse Level 3#		3	0	0	3	3#
PRAC	TICALS			I	I			l
9		Metrology and Dynamics Laboratory	PCC	0	0	4	4	2
10		Heat Transfer Laboratory	PCC	0	0	4	4	2
	1		TOTAL	21	0	8	32	25

^{*}Open Elective- I shall be chosen from the emerging technologies.

[&]amp;Mandatory Course-II is a Non-credit Course (Student shall select one course from the list given under MC- II)

[#]NCCCreditCourselevel3isofferedforNCCstudentsonly.Thegradesearnedby the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER VII/VIII*

S. NO.	COURSE	COURSETITLE	CATE GORY		ERIOD RWEE	K	TOTAL CONTACT	CREDITS
140.	CODE		GOKT	L	Т	Р	PERIODS	
THEC	RY							
1.		Automotive Engine and Chassis Component Design	PCC	3	0	0	3	3
2.		Human Values and Ethics	HSMC	2	0	0	2	2
3.		Industrial Management	HSMC	3	0	0	3	3
4.		Embedded System for Automobiles	PCC	3	0	0	3	3
5.		Open Elective–III**	OEC	3	0	0	3	3
6.		Open Elective–IV***	OEC	3	0	0	3	3
7.		Mandatory Course-II&	МС	3	0	0	3	Non-Credit Course
PRAC	TICALS							
8.		Computer Aided Engine and Chassis Design Laboratory	PCC	0	0	4	4	2
		Embedded System for Automobiles Laboratory	PCC	0	0	4	4	2
9.		Summer Internship#	EEC	0	0	0	0	1
	-	,	TOTAL	21	0	8	29	23

#Two weeks Summer Internship carries one credit and it will be done during VI semester summer vacation and same will be evaluated in VII semester.

SEMESTER VIII / VII*

S. NO.	. COURSE COURSETITIE CATE				IODSF WEEK	PER	TOTAL CONTACT	CREDITS	
NO.	CODE		GORT	GORY		Р	PERIODS		
PRAC	CTICALS								
1.		Project Work / Internship	EEC	0	0	20	20	10	
			TOTAL	0	0	20	20	10	

^{*}If students undergo internship in Semester VII, then the courses offered during semester VII will be offered during semester VIII.

TOTAL:170 CREDITS

^{*}If students undergo internship in Semester VII, then the courses offered during semester VII will be offered during semester VIII.

^{**}Open Elective - I and II shall be chosen from the emerging technologies.
***Open Elective - III (Shall be chosen from the list of open electives offered by other Programmes).

MANDATORY COURSES I*

S. NO.	COURSE	COURSE TITLE	CATE GORY	PERIODS PER WEEK			TOTAL CONTACT
NO.	CODE		GORT	L	T	Р	PERIODS
1.		Introduction to Women and Gender Studies	MC	3	0	0	3
2.		Elements of Literature	MC	3	0	0	3
3.		Film Appreciation	MC	3	0	0	3
4.		Disaster Risk Reduction and Management	MC	3	0	0	3

^{*}Mandatory Courses are offered as Non-Credit courses

MANDATORY COURSES II*

S.	COURSE CODE	COURSE TITLE	CATE GORY		RIOD WEE	_	TOTAL CONTACT	
NO.	CODE		GORT	L	Т	Р	PERIODS	
1.		Well Being with Traditional Practices- Yoga, Ayurveda and Siddha	MC	3	0	0	3	
2.		History of Science and Technology in India	MC	3	0	0	3	
3.		Political and Economic Thought for a Humane Society	MC	3	0	0	3	
4.		State, Nation Building and Politics in India	MC	3	0	0	3	
5.		Industrial Safety	MC	3	0	0	3	

^{*}Mandatory Courses are offered as Non-Credit courses

PROFESSIONAL ELECTIVE COURSES: VERTICALS

VERTICAL 1	VERTICAL 2	VERTICAL 3	VERTICAL4	VERTICAL5	VERTICAL6	VERTICAL7
ELECTRIC VEHICLES	MODERN MOBILITY SYSTEMS	VEHICLE RESEARCH ANDVALIDATION	SPECIAL PURPOSE VEHICLES	PRODUCT AND PROCESS DEVELOPMENT	COMPUTATIONAL DESIGN	ROBOTICS AND AUTOMATION
Electric Two and Three Wheelers	Automotive Materials, Components, Design& Testing	Advanced Automotive Materials	Agricultural Vehicles	Value Engineering	Computer Aided Design and Manufacturing	Sensors and Instrumentation
Batteries and Management system	Conventional and Futuristic Vehicle Technology	Noise, Vibration and Harshness	Defence Vehicles	Additive Manufacturing	Integrated Computational Materials Engineering	Electrical Drives and Actuators
Traction Motors	Renewable Powered Off Highway Vehicles and Emission Control Technology	Combustion Thermodynamics and Heat Transfer	Constructions Vehicles	CAD/CAM	Computational Theory on Solid Mechanics	AI and ML
Automotive Power Electronics	Vehicle Health Monitoring, Maintenance and Safety	Alternative Fuels and Energy Systems	Marine Vehicles	Design For X	Computational and Visualization Theory	Robotics
Automotive Functional Safety	CAE and CFD Approach in Future Mobility	Vehicle Body Engineering	Space Vehicles	Ergonomics in Design	Computer Integrated Manufacturing	Smart Mobility and Intelligent Vehicles
Fuel cell Technologies	Special Purpose Vehicles	Testing and Measurement Systems	Gas Dynamics and Jet Propulsion	New Product Development	Computational Aero Dynamics	Haptics and Immersive Technologies
Autonomous and Connected Vehicles	Thermal Management of Batteries and Fuel Cells	Vehicle Dynamics	Drone Technologies	Product Life Cycle Management	CFD and Heat transfer	Drone Technologies

Registration of Professional Elective Courses from Verticals:

Refer to the Regulations 2021, Clause 6.3. (Amended on 27.07.2023)

PROFESSIONAL ELECTIVE COURSES: VERTICALS VERTICAL 1: ELECTRIC VEHICLES

SI. No.	Course code	Course title	Category		riods wee		Total Contact	Credits
INO.				L	Т	Р	periods	
1.		Electric Two and Three Wheelers	PEC	3	0	0	3	3
2.		Batteries and Management system	PEC	3	0	0	3	3
3.		Traction Motors	PEC	3	0	0	3	3
4.		Automotive Power Electronics	PEC	3	0	0	3	3
5.		Automotive Functional Safety	PEC	3	0	0	3	3
6.		Fuel Cell Technologies	PEC	3	0	0	3	3
7.		Autonomous and Connected Vehicles	PEC	3	0	0	3	3
8.		Sensors and Actuators	PEC	3	0	0	3	3

VERTICAL 2: MODERN MOBILITY SYSTEMS

SI. No.	Course Code	Course Title	Category	F	Perio Per w		Total Contact	Credits
140.	Code	Course Title		L	T	Р	period	Credits
1.		Automotive Materials, Components, Design and Testing	PEC	2	0	2	4	3
2.		Conventional and Futuristic Vehicle Technology	PEC	3	0	0	3	3
3.		Renewable Powered Off Highway Vehicles and Emission Control Technology	PEC	3	0	0	3	3
4.		Vehicle Health Monitoring, Maintenance and Safety	PEC	3	0	0	3	3
5.		CAE and CFD Approach in Future Mobility	PEC	2	0	2	4	3
6.		Special Purpose Vehicles	PEC	3	0	0	3	3
7.		Thermal Management of Batteries and Fuel Cells	PEC	3	0	0	3	3

VERTICAL 3: VEHICLE RESEARCH AND VALIDATION

SI. No.	Course code	Course title	Category		riods week		Total Contact	Credits
NO.				L	Т	Р	periods	
1.		Advanced Automotive Materials	PEC	3	0	0	3	3
2.		Noise, Vibration and Harshness	PEC	3	0	0	3	3
3.		Combustion Thermodynamics and Heat Transfer	PEC	3	0	0	3	3
4.		Alternative Fuels and Energy Systems	PEC	3	0	0	3	3

5.	Vehicle Body Engineering	PEC	3	0	0	3	3
6.	Testing and Measurement Systems	PEC	3	0	0	3	3
7.	Vehicle Dynamics	PEC	3	0	0	3	3
8.	IC Engine Process Modelling	PEC	3	0	0	3	3

VERTICAL5: SPECIAL PURPOSE VEHICLES

SI.	Course		Catagony		erioc er we		Total	
No.	Code	Course Title	Category	L	T	P	Contact period	Credits
1.		Agricultural Vehicles	PEC	3	0	0	3	3
2.		Defence Vehicles	PEC	2	0	2	4	3
3.		Constructions Vehicles	PEC	3	0	0	3	3
4.		Marine Vehicles	PEC	3	0	0	3	3
5.		Space Vehicles	PEC	3	0	0	3	3
6.		Gas Dynamics and Jet Propulsion	PEC	3	0	0	3	3
7.		Drone Technologies	PEC	3	0	0	3	3

VERTICAL5: PRODUCT AND PROCESS DEVELOPMENT

SI.	Course	Course Title	Category	Pe	riods weel		Total Contact	Credits
No.	Code	Godies This	outogo. y	L	T	P	period	o ouno
1.		Value Engineering	PEC	3	0	0	3	3
2.		Additive Manufacturing	PEC	2	0	2	4	3
3.		CAD/CAM	PEC	3	0	0	3	3
4.		Design for X	PEC	3	0	0	3	3
5.		Ergonomics in Design	PEC	3	0	0	3	3
6.		New Product Development	PEC	3	0	0	3	3
7.		Product Life Cycle Management	PEC	3	0	0	3	3

VERTICAL 6: ROBOTICS AND AUTOMATION

SI.	Course		Category		erioc er we		Total Contact	Crodits
No.	Code	Course Title	3 ,	L	Т	Р	Period	Credits
1.		Sensors and Instrumentation	PEC	3	0	0	3	3
2.		Electrical Drives and Actuators	PEC	3	0	0	3	3
3.		Al and ML	PEC	2	0	2	4	3
4.		Robotics	PEC	3	0	0	3	3
5.		Smart Mobility and Intelligent Vehicles	PEC	3	0	0	3	3
6.		Haptics and Immersive Technologies	PEC	3	0	0	3	3
7.		Drone Technologies	PEC	3	0	0	3	3

VERTICAL7: COMPUTATIONAL DESIGN

SI. No.	Course Code	Course title	Category	Pe	riods wee	_	Total contact	Credits
NO.				L	T	Р	periods	
1.		Computer Aided Design and Manufacturing	PEC	3	0	0	3	3
2.		Integrated Computational Materials Engineering	PEC	3	0	0	3	3
3.		Computational Theory on Solid Mechanics	PEC	3	0	0	3	3
4.		Computational and Visualization Theory	PEC	3	0	0	3	3
5.		Computer Integrated Manufacturing	PEC	3	0	0	3	3
6.		Computational Aero Dynamics	PEC	3	0	0	3	3
7.		CFD and Heat transfer	PEC	3	0	0	3	3
8.		Digital Manufacturing of Automobiles	PEC	3	0	0	3	3

OPEN ELECTIVES

(Students shall choose the open elective courses, such that the course contents are not similar to any other course contents/title under other course categories)

OPEN ELECTIVE I AND II (EMERGINGTECHNOLOGIES)

To be offered other than Faculty of Information and Communication Engineering

SL. NO.			CATE GORY	PER PER	RIOD WEE	_	TOTAL CONTACT	CREDITS
NO.			GOKI	L	Т	Р	PERIODS	
1.		Artificial Intelligence and	OEC	2	0	2	4	3
		Machine Learning Fundamentals						
2.		IoT Concepts and Applications	OEC	2	0	2	4	3
3.		Data Science Fundamentals	OEC	2	0	2	4	3
4.		Augmented Reality / Virtual	OEC	2	0	2	4	3
		Reality						

OPEN ELECTIVES-III

SL.	COURSE		CATE		RIOI	os	TOTAL	
NO.	CODE	COURSETITLE	GORY	PEF	RWE	EK	CONTACT	CREDITS
				L	Т	Р	PERIODS	
1.		Lean Concepts, Tools and	OEC	3	0	0	3	3
		Practices						
2.		English for Competitive	OEC	3	0	0	3	3
		Examinations						
3.		NGOs and Sustainable	OEC	3	0	0	3	3
		Development						
4.		Democracy and Good	OEC	3	0	0	3	3
		Governance					_	
5.		Applied Design Thinking	OEC	3	0	0	3	3
6.		Reverse Engineering	OEC	3	0	0	3	3
7.		Sustainable Manufacturing	OEC	3	0	0	3	3
8.		Electric and Hybrid Vehicles	OEC	3	0	0	3	3
9.		Space Engineering	OEC	3	0	0	3	3
10.		Industrial Management	OEC	3	0	0	3	3
11.		Quality Engineering	OEC	3	0	0	3	3
12.		Fire Safety Engineering	OEC	3	0	0	3	3
13.		Fundamentals of Aeronautical	OEC	3	0	0	3	3
		Engineering		_	_		_	_
14.		Introduction to non- destructive	OEC	3	0	0	3	3
		Testing	0=0					
15.		Mechatronics	OEC	3	0	0	3	3
16.		Foundation of Robotics	OEC	3	0	0	3	3
17.		Remote Sensing Concepts	OEC	3	0	0	3	3
18.		Urban Agriculture	OEC	3	0	0	3	3
19.		Drinking Water Supply and	OEC	3	0	0	3	3
		Treatment						
20.		Electric Vehicle Technology	OEC	3	0	0	3	3
21.		Introduction to PLC	OEC	3	0	0	3	3
		Programming						
22.		Nano Technology	OEC	3	0	0	3	3
23.		Functional Materials	OEC	3	0	0	3	3

25.	Traditional Indian Foods	OEC	3	0	0	3	3
26.	Introduction to food processing	OEC	3	0	0	3	3
27.	IPR for Pharma Industry	OEC	3	0	0	3	3
28.	Basics of Textile Finishing	OEC	3	0	0	3	3
29.	Industrial Engineering for Garment Industry	OEC	3	0	0	3	3
30.	Basics of Textile Manufacture	OEC	3	0	0	3	3
31.	Introduction to Petroleum Refining and Petrochemicals	OEC	3	0	0	3	3
32.	Energy Conservation and Management	OEC	3	0	0	3	3
33.	Basics of Plastics Processing	OEC	3	0	0	3	3
34.	Signals and Systems	OEC	3	0	0	3	3
35.	Fundamentals of Electronic Devices and Circuits	OEC	3	0	0	3	3
36.	Foundation Skills in Integrated	OEC					
	product Development		3	0	0	3	3
37.	Assistive Technology	OEC	3	0	0	3	3
38.	Operations Research	OEC	3	0	0	3	3
39.	Algebra and Number Theory	OEC	3	0	0	3	3
40.	Linear Algebra	OEC	3	0	0	3	3
41.	Basics of Microbial Technology	OEC	3	0	0	3	3
42.	Basics of Biomolecules	OEC	3	0	0	3	3
43.	Fundamentals of Cell and Molecular Biology	OEC	3	0	0	3	3

SUMMARY

	B.E.MEC	HANIC	AL (SPE	CIALIZE	D IN AU	ТОМОВ	LE) ENC	SINEERI	NG	
S.No	Subject Area			Cr	edits pe	r Semes	ster			Total Credits
		I	II	III	IV	V	VI	VII/VIII	VIII/VII	Ciedits
1	HSMC	4	3					5		12
2	BSC	12	7	4	2					25
3	ESC	5	11	8						24
4	PCC			11	19	13	10	10		63
5	PEC					9	9			18
6	OEC						6	6		12
7	EEC	1	2	1		1		1	10	16
8	Non-Credit /(Mandatory)		V	V	V	V	V	V		
	Total	22	23	24	21	23	25	22	10	170

INDUCTION PROGRAMME

This is a mandatory 2 week programme to be conducted as soon as the students enter the institution. Normal classes start only after the induction program is over.

The induction programme has been introduced by AICTE with the following objective:

"Engineering colleges were established to train graduates well in the branch/department of admission, have a holistic outlook, and have a desire to work for national needs and beyond. The graduating student must have knowledge and skills in the area of his/her study. However, he/she must also have broad understanding of society and relationships. Character needs to be nurtured as an essential quality by which he/she would understand and fulfill his/her responsibility as an engineer, a citizen and a human being. Besides the above, several meta-skills and underlying values are needed."

"One will have to work closely with the newly joined students in making them feel comfortable, allow them to explore their academic interests and activities, reduce competition and make them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and build character. "

Hence, the purpose of this programme is to make the students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature.

The following are the activities under the induction program in which the student would be fully engaged throughout the day for the entire duration of the program.

(i) Physical Activity

This would involve a daily routine of physical activity with games and sports, yoga, gardening, etc.

(ii) Creative Arts

Every student would choose one skill related to the arts whether visual arts or performing arts. Examples are painting, sculpture, pottery, music, dance etc. The student would pursue it everyday for the duration of the program. These would allow for creative expression. It would develop a sense of aesthetics and also enhance creativity which would, hopefully, grow into engineering design later.

(iii) Universal Human Values

This is the anchoring activity of the Induction Programme. It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, take decisions with courage, be aware of relationships with colleagues and supporting stay in the hostel and department, be sensitive to others, etc. A module in Universal Human Values provides the base. Methodology of teaching this content is extremely important. It must not be through do's and dont's, but get students to explore and think by engaging them in a dialogue. It is best taught through group discussions and real life activities rather than lecturing.

Discussions would be conducted in small groups of about 20 students with a faculty mentor each. It would be effective that the faculty mentor assigned is also the faculty advisor for the student for the full duration of the UG programme.

(iv) Literary Activity

Literary activity would encompass reading, writing and possibly, debating, enacting a play etc.

(v) Proficiency Modules

This would address some lacunas that students might have, for example, English, computer familiarity etc.

(vi) Lectures by Eminent People

Motivational lectures by eminent people from all walks of life should be arranged to give the students exposure to people who are socially active or in public life.

(vii) Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the under privileged.

(viii) Familiarization to Dept./Branch & Innovations

They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities.

(ix) Department Specific Activities

About a week can be spent in introducing activities (games, quizzes, social interactions, small experiments, design thinking etc.) that are relevant to the particular branch of Engineering /Technology/Architecture that can serve as a motivation and kindle interest in building things (become a maker) in that particular field. This can be conducted in the form of a workshop. For example, CSE and IT students may be introduced to activities that kindle computational thinking, and get them to build simple games. ECE students may be introduced to building simple circuits as an extension of their knowledge in Science, and so on. Students may be asked to build stuff using their knowledge of science.

Induction Programme is totally an activity based programme and therefore there shall be no tests / assessments during this programme.

References:

Guide to Induction program from AICTE

OBJECTIVES:

- To improve the communicative competence of learners
- To learn to use basic grammatic structures in suitable contexts
- To acquire lexical competence and use them appropriately in a sentence and understand their meaning in a text
- To help learners use language effectively in professional contexts
- To develop learners' ability to read and write complex texts, summaries, articles, blogs, definitions, essays and user manuals.

UNIT I INTRODUCTION TO EFFECTIVE COMMUNICATION

1

What is effective communication? (Explain using activities) Why is communication critical for excellence during study, research and work? What are the seven C's of effective communication? What are key language skills? What is effective listening? What does it involve? What is effective speaking? What does it mean to be an excellent reader? What should you be able to do? What is effective writing? How does one develop language and communication skills? What does the course focus on? How are communication and language skills going to be enhanced during this course? What do you as a learner need to do to enhance your English language and communication skills to get the best out of this course?

INTRODUCTION TO FUNDAMENTALS OF COMMUNICATION

8

Reading - Reading brochures (technical context), telephone messages / social media messages relevant to technical contexts and emails. Writing - Writing emails / letters introducing oneself. Grammar - Present Tense (simple and progressive); Question types: Why/ Yes or No/ and Tags. Vocabulary - Synonyms; One word substitution; Abbreviations & Acronyms (as used in technical contexts).

UNIT II NARRATION AND SUMMATION

9

Reading - Reading biographies, travelogues, newspaper reports, Excerpts from literature, and travel & technical blogs. Writing - Guided writing-- Paragraph writing Short Report on an event (field trip etc.) Grammar —Past tense (simple); Subject-Verb Agreement; and Prepositions. Vocabulary - Word forms (prefixes suffixes); Synonyms and Antonyms. Phrasal verbs.

UNIT III DESCRIPTION OF A PROCESS / PRODUCT

9

Reading – Reading advertisements, gadget reviews; user manuals. Writing - Writing definitions; instructions; and Product /Process description. Grammar - Imperatives; Adjectives; Degrees of comparison; Present & Past Perfect Tenses. Vocabulary - Compound Nouns, Homonyms; and Homophones, discourse markers (connectives & sequence words).

UNIT IV CLASSIFICATION AND RECOMMENDATIONS

9

Reading – Newspaper articles; Journal reports –and Non Verbal Communication (tables, pie charts etc.). Writing – Note-making / Note-taking (*Study skills to be taught, not tested); Writing recommendations; Transferring information from non verbal (chart, graph etc., to verbal mode) Grammar – Articles; Pronouns - Possessive & Relative pronouns. Vocabulary - Collocations; Fixed / Semi fixed expressions.

UNIT V EXPRESSION

9

Reading – Reading editorials; and Opinion Blogs; Writing – Essay Writing (Descriptive or narrative). Grammar – Future Tenses, Punctuation; Negation (Statements & Questions); and Simple, Compound & Complex Sentences. Vocabulary - Cause & Effect Expressions – Content vs Function words.

TOTAL: 45 PERIODS

LEARNING OUTCOMES:

At the end of the course, learners will be able

- To use appropriate words in a professional context
- To gain understanding of basic grammatical structures and use them in right context.
- To read and infer the denotative and connotative meanings of technical texts
- To read and interpret information presented in tables, charts and other graphic forms
- To write definitions, descriptions, narrations and essays on various topics

TEXT BOOKS:

- 1. English for Engineers & Technologists Orient Blackswan Private Ltd. Department of English, Anna University, (2020 edition)
- 2. English for Science & Technology Cambridge University Press, 2021.
 Authored by Dr. Veena Selvam, Dr. Sujatha Priyadarshini, Dr. Deepa Mary Francis, Dr. KN. Shoba, and Dr. Lourdes Joevani, Department of English, Anna University.

REFERENCE BOOKS:

- 1. Technical Communication Principles And Practices By Meenakshi Raman & Sangeeta Sharma, Oxford Univ. Press, 2016, New Delhi.
- 2. A Course Book On Technical English By Lakshminarayanan, Scitech Publications (India) Pvt. Ltd.
- 3. English For Technical Communication (With CD) By Aysha Viswamohan, Mcgraw Hill Education, ISBN: 0070264244.
- 4. Effective Communication Skill, Kulbhusan Kumar, RS Salaria, Khanna Publishing House.
- 5. Learning to Communicate Dr. V. Chellammal, Allied Publishing House, New Delhi, 2003.

ASSESSMENT PATTERN

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence.

CO PO **PSO** _ AVg. 2.2 1.8 2.2 1.6 1.

CO-PO & PSO MAPPING

- 1-low, 2-medium, 3-high, '-"- no correlation
- Note: The average value of this course to be used for program articulation matrix.

COURSE OBJECTIVES:

- To develop the use of matrix algebra techniques that is needed by engineers for practical applications.
- To familiarize the students with differential calculus.
- To familiarize the student with functions of several variables. This is needed in many branches
 of engineering.
- To make the students understand various techniques of integration.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their applications.

UNIT - I MATRICES

9 + 3

Eigenvalues and Eigenvectors of a real matrix – Characteristic equation – Properties of Eigenvalues and Eigenvectors – Cayley - Hamilton theorem – Diagonalization of matrices by orthogonal transformation – Reduction of a quadratic form to canonical form by orthogonal transformation – Nature of quadratic forms – Applications: Stretching of an elastic membrane.

UNIT - II DIFFERENTIAL CALCULUS

9 + 3

Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules (sum, product, quotient, chain rules) - Implicit differentiation - Logarithmic differentiation - Applications : Maxima and Minima of functions of one variable.

UNIT - III FUNCTIONS OF SEVERAL VARIABLES

9 + 3

Partial differentiation – Homogeneous functions and Euler's theorem – Total derivative – Change of variables – Jacobians – Partial differentiation of implicit functions – Taylor's series for functions of two variables – Applications: Maxima and minima of functions of two variables and Lagrange's method of undetermined multipliers.

UNIT - IV INTEGRAL CALCULUS

9 + 3

Definite and Indefinite integrals - Substitution rule - Techniques of Integration: Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals - Applications: Hydrostatic force and pressure, moments and centres of mass.

UNIT - V MULTIPLE INTEGRALS

9 + 3

TOTAL: 60 PERIODS

Double integrals – Change of order of integration – Double integrals in polar coordinates – Area enclosed by plane curves – Triple integrals – Volume of solids – Change of variables in double and triple integrals – Applications: Moments and centres of mass, moment of inertia.

COURSE OUTCOMES:

At the end of the course the students will be able to

- Use the matrix algebra methods for solving practical problems.
- Apply differential calculus tools in solving various application problems.
- Able to use differential calculus ideas on several variable functions.
- Apply different methods of integration in solving practical problems.
- Apply multiple integral ideas in solving areas, volumes and other practical problems.

TEXT BOOKS:

- 1. Kreyszig.E, "Advanced Engineering Mathematics", John Wiley and Sons, 10th Edition, New Delhi, 2016.
- 2. Grewal.B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44th Edition, 2018.
- 3. James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 8th Edition, New Delhi, 2015. [For Units II & IV Sections 1.1, 2.2, 2.3, 2.5, 2.7 (Tangents problems only), 2.8, 3.1 to 3.6,

3.11, 4.1, 4.3, 5.1 (Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem), 5.5, 7.1 - 7.4 and 7.8].

REFERENCES:

- 1. Anton. H, Bivens. I and Davis. S, " Calculus ", Wiley, 10th Edition, 2016
- 2. Bali. N., Goyal. M. and Watkins. C., "Advanced Engineering Mathematics", Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009.
- 3. Jain. R.K. and Iyengar. S.R.K., "Advanced Engineering Mathematics", Narosa Publications, New Delhi, 5th Edition, 2016.
- 4. Narayanan. S. and Manicavachagom Pillai. T. K., "Calculus" Volume I and II, S. Viswanathan Publishers Pvt. Ltd., Chennai, 2009.
- 5. Ramana. B.V., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd, New Delhi, 2016.
- 6. Srimantha Pal and Bhunia. S.C, "Engineering Mathematics" Oxford University Press, 2015.
- 7. Thomas. G. B., Hass. J, and Weir. M.D, "Thomas Calculus", 14th Edition, Pearson India, 2018.

	PO 1	PO2	РО3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	1	0	0	0	0	2	0	2	3	-	-	-
CO2	3	3	1	1	0	0	0	0	2	0	2	3	-	-	-
CO3	3	3	1	1	0	0	0	0	2	0	2	3	-	-	-
CO4	3	3	1	1	0	0	0	0	2	0	2	3	-	-	-
CO5	3	3	1	1	0	0	0	0	2	0	2	3	-	-	-
Avg	3	3	1	1	0	0	0	0	2	0	2	3	-	-	-

COURSE OBJECTIVES

- To make the students effectively to achieve an understanding of mechanics.
- To enable the students to gain knowledge of electromagnetic waves and its applications.
- To introduce the basics of oscillations, optics and lasers.
- Equipping the students to be successfully understand the importance of quantum physics.
- To motivate the students towards the applications of quantum mechanics.

UNIT I MECHANICS

9

Multi-particle dynamics: Center of mass (CM) – CM of continuous bodies – motion of the CM – kinetic energy of system of particles. Rotation of rigid bodies: Rotational kinematics – rotational kinetic energy and moment of inertia - theorems of M .I –moment of inertia of continuous bodies – M.I of a diatomic molecule - torque – rotational dynamics of rigid bodies – conservation of angular momentum – rotational energy state of a rigid diatomic molecule - gyroscope - torsional pendulum – double pendulum – Introduction to nonlinear oscillations.

UNIT II ELECTROMAGNETIC WAVES

9

The Maxwell's equations - wave equation; Plane electromagnetic waves in vacuum, Conditions on the wave field - properties of electromagnetic waves: speed, amplitude, phase, orientation and waves in matter - polarization - Producing electromagnetic waves - Energy and momentum in EM waves: Intensity, waves from localized sources, momentum and radiation pressure - Cell-phone reception. Reflection and transmission of electromagnetic waves from a non-conducting medium-vacuum interface for normal incidence.

UNIT III OSCILLATIONS, OPTICS AND LASERS

9

Simple harmonic motion - resonance –analogy between electrical and mechanical oscillating systems - waves on a string - standing waves - traveling waves - Energy transfer of a wave - sound waves - Doppler effect. Reflection and refraction of light waves - total internal reflection - interference –Michelson interferometer –Theory of air wedge and experiment. Theory of laser - characteristics - Spontaneous and stimulated emission - Einstein's coefficients - population inversion - Nd-YAG laser, CO₂ laser, semiconductor laser –Basic applications of lasers in industry.

UNIT IV BASIC QUANTUM MECHANICS

g

Photons and light waves - Electrons and matter waves - Compton effect - The Schrodinger equation (Time dependent and time independent forms) - meaning of wave function - Normalization - Free particle - particle in a infinite potential well: 1D,2D and 3D Boxes- Normalization, probabilities and the correspondence principle.

UNIT V APPLIED QUANTUM MECHANICS

9

The harmonic oscillator(qualitative)- Barrier penetration and quantum tunneling(qualitative)- Tunneling microscope - Resonant diode - Finite potential wells (qualitative)- Bloch's theorem for particles in a periodic potential –Basics of Kronig-Penney model and origin of energy bands.

TOTAL: 45 PERIODS

COURSE OUTCOMES

After completion of this course, the students should be able to

- Understand the importance of mechanics.
- Express their knowledge in electromagnetic waves.
- Demonstrate a strong foundational knowledge in oscillations, optics and lasers.
- Understand the importance of quantum physics.
- Comprehend and apply quantum mechanical principles towards the formation of energy bands.

TEXT BOOKS:

- 1. D.Kleppner and R.Kolenkow. An Introduction to Mechanics. McGraw Hill Education (Indian Edition), 2017.
- 2. E.M.Purcell and D.J.Morin, Electricity and Magnetism, Cambridge Univ. Press, 2013.
- 3. Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, Concepts of Modern Physics, McGraw-Hill (Indian Edition), 2017.

REFERENCES:

- 1. R.Wolfson. Essential University Physics. Volume 1 & 2. Pearson Education (Indian Edition), 2009.
- 2. Paul A. Tipler, Physic Volume 1 & 2, CBS, (Indian Edition), 2004.
- 3. K.Thyagarajan and A.Ghatak. Lasers: Fundamentals and Applications, Laxmi Publications, (Indian Edition), 2019.
- 4. D.Halliday, R.Resnick and J.Walker. Principles of Physics, Wiley (Indian Edition), 2015.
- 5. N.Garcia, A.Damask and S.Schwarz. Physics for Computer Science Students. Springer- Verlag, 2012.

CO's-PO's & PSO's MAPPING

CO's					PO's								F	PSC	D's
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	2	1	1	1	-	-	-	-	-	-	-	-	-
2	3	3	2	1	2	1	-	-	-	-	-	-	-	-	-
3	3	3	2	2	2	1	-	-	-	-	-	1	-	-	-
4	3	3	1	1	2	1	-	-	-	-	-	-	-	-	
5	3	3	1	1	2	1	-	-	-	-	-	-	-	-	-
AVG	3	3	1.6	1.2	1.8	1	-	-	-	-	-	1	-	-	-

1-Low,2-Medium,3-High,"-"-no correlation

Note: the average value of this course to be used for program articulation matrix.

COURSE OBJECTIVES:

- To inculcate sound understanding of water quality parameters and water treatment techniques.
- To impart knowledge on the basic principles and preparatory methods of nanomaterials.
- To introduce the basic concepts and applications of phase rule and composites.
- To facilitate the understanding of different types of fuels, their preparation, properties and combustion characteristics.
- To familiarize the students with the operating principles, working processes and applications of energy conversion and storage devices.

UNIT I WATER AND ITS TREATMENT

9

Water: Sources and impurities, Water quality parameters: Definition and significance of-color, odour, turbidity, pH, hardness, alkalinity, TDS, COD and BOD, flouride and arsenic. Municipal water treatment: primary treatment and disinfection (UV, Ozonation, break-point chlorination). Desalination of brackish water: Reverse Osmosis. Boiler troubles: Scale and sludge, Boiler corrosion, Caustic embrittlement, Priming &foaming. Treatment of boiler feed water: Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning) and External treatment – Ion exchange demineralization and zeolite process.

UNIT II NANOCHEMISTRY

9

Basics: Distinction between molecules, nanomaterials and bulk materials; Size-dependent properties (optical, electrical, mechanical and magnetic); Types of nanomaterials: Definition, properties and uses of – nanoparticle, nanocluster, nanorod, nanowire and nanotube. Preparation of nanomaterials: sol-gel, solvothermal, laser ablation, chemical vapour deposition, electrochemical deposition and electro spinning. Applications of nanomaterials in medicine, agriculture, energy, electronics and catalysis.

UNIT III PHASE RULE AND COMPOSITES

q

Phase rule: Introduction, definition of terms with examples. One component system - water system; Reduced phase rule; Construction of a simple eutectic phase diagram - Thermal analysis; Two component system: lead-silver system - Pattinson process.

Composites: Introduction: Definition & Need for composites; Constitution: Matrix materials (Polymer matrix, metal matrix and ceramic matrix) and Reinforcement (fiber, particulates, flakes and whiskers). Properties and applications of: Metal matrix composites (MMC), Ceramic matrix composites and Polymer matrix composites. Hybrid composites - definition and examples.

UNIT IV FUELS AND COMBUSTION

9

Fuels: Introduction: Classification of fuels; Coal and coke: Analysis of coal (proximate and ultimate), Carbonization, Manufacture of metallurgical coke (Otto Hoffmann method). Petroleum and Diesel: Manufacture of synthetic petrol (Bergius process), Knocking - octane number, diesel oil - cetane number; Power alcohol and biodiesel.

Combustion of fuels: Introduction: Calorific value - higher and lower calorific values, Theoretical calculation of calorific value; Ignition temperature: spontaneous ignition temperature, Explosive range; Flue gas analysis - ORSAT Method. CO₂ emission and carbon foot print.

UNIT V ENERGY SOURCES AND STORAGE DEVICES

9

Stability of nucleus: mass defect (problems), binding energy; Nuclear energy: light water nuclear power plant, breeder reactor. Solar energy conversion: Principle, working and applications of solar cells; Recent developments in solar cell materials. Wind energy; Geothermal energy; Batteries: Types of batteries, Primary battery - dry cell, Secondary battery - lead acid battery and lithium-ion-battery; Electric vehicles – working principles; Fuel cells: H₂-O₂ fuel cell, microbial fuel cell; Supercapacitors: Storage principle, types and examples.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of the course, the students will be able:

- To infer the quality of water from quality parameter data and propose suitable treatment methodologies to treat water.
- To identify and apply basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for engineering and technology applications.
- To apply the knowledge of phase rule and composites for material selection requirements.
- To recommend suitable fuels for engineering processes and applications.
- To recognize different forms of energy resources and apply them for suitable applications in energy sectors.

TEXT BOOKS:

- 1. P. C. Jain and Monica Jain, "Engineering Chemistry", 17th Edition, Dhanpat Rai Publishing Company (P) Ltd. New Delhi. 2018.
- 2. Sivasankar B., "Engineering Chemistry", Tata McGraw-Hill Publishing Company Ltd, New Delhi, 2008.
- 3. S.S. Dara, "A Text book of Engineering Chemistry", S. Chand Publishing, 12th Edition, 2018.

REFERENCES:

- 1. B. S. Murty, P. Shankar, Baldev Raj, B. B. Rath and James Murday, "Text book of nanoscience and nanotechnology", Universities Press-IIM Series in Metallurgy and Materials Science, 2018.
- 2. O.G. Palanna, "Engineering Chemistry" McGraw Hill Education (India) Private Limited, 2nd Edition, 2017.
- 3. Friedrich Emich, "Engineering Chemistry", Scientific International PVT, LTD, New Delhi, 2014.
- 4. ShikhaAgarwal, "Engineering Chemistry-Fundamentals and Applications", Cambridge University Press, Delhi, Second Edition, 2019.
- 5. O.V. Roussak and H.D. Gesser, Applied Chemistry-A Text Book for Engineers and Technologists, Springer Science Business Media, New York, 2nd Edition, 2013.

CO-PO & PSO MAPPING

СО			P	0							PSO				
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	2	1	-	1	1	-	-	-	-	1	-	-	-
2	2	-	-	1	-	2	2	-	-	-	-	-	-	-	-
3	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-
4	3	1	1	-	-	1	2	-	-	-	-	-	-	-	-
5	3	1	2	1	-	2	2	-	-	-	-	2	-	-	-
Av	2.8	1.3	1.6	1	-	1.5	1.8	-		-	-	1.5	-	-	-
g.															

1-low, 2-medium, 3-high, '-"- no correlation

COURSE OBJECTIVES:

- To understand the basics of algorithmic problem solving.
- To learn to solve problems using Python conditionals and loops.
- To define Python functions and use function calls to solve problems.
- To use Python data structures lists, tuples, dictionaries to represent complex data.
- To do input/output with files in Python.

UNIT I COMPUTATIONAL THINKING AND PROBLEM SOLVING

9

Fundamentals of Computing – Identification of Computational Problems -Algorithms, building blocks of algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion). Illustrative problems: find minimum in a list, insert a card in a list of sorted cards, guess an integer number in a range, Towers of Hanoi.

UNIT II DATA TYPES, EXPRESSIONS, STATEMENTS

9

Python interpreter and interactive mode, debugging; values and types: int, float, boolean, string, and list; variables, expressions, statements, tuple assignment, precedence of operators, comments; Illustrative programs: exchange the values of two variables, circulate the values of n variables, distance between two points.

UNIT III CONTROL FLOW, FUNCTIONS, STRINGS

9

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values, parameters, local and global scope, function composition, recursion; Strings: string slices, immutability, string functions and methods, string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.

UNIT IV LISTS, TUPLES, DICTIONARIES

9

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: simple sorting, histogram, Students marks statement, Retail bill preparation.

UNIT V FILES, MODULES, PACKAGES

9

TOTAL: 45 PERIODS

Files and exception: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs: word count, copy file, Voter's age validation, Marks range validation (0-100).

COURSE OUTCOMES:

Upon completion of the course, students will be able to

- CO1: Develop algorithmic solutions to simple computational problems.
- CO2: Develop and execute simple Python programs.
- CO3: Write simple Python programs using conditionals and looping for solving problems.
- CO4: Decompose a Python program into functions.
- CO5: Represent compound data using Python lists, tuples, dictionaries etc.
- CO6: Read and write data from/to files in Python programs.

TEXT BOOKS:

- 1. Allen B. Downey, "Think Python: How to Think like a Computer Scientist", 2nd Edition, O'Reilly Publishers. 2016.
- 2. Karl Beecher, "Computational Thinking: A Beginner's Guide to Problem Solving and programming", 1st Edition, BCS Learning & Development Limited, 2017.

REFERENCES:

- 1. Paul Deitel and Harvey Deitel, "Python for Programmers", Pearson Education, 1st Edition, 2021.
- 2. G Venkatesh and Madhavan Mukund, "Computational Thinking: A Primer for Programmers and Data Scientists", 1st Edition, Notion Press, 2021.
- 3. John V Guttag, "Introduction to Computation and Programming Using Python: With Applications to Computational Modeling and Understanding Data", Third Edition, MIT Press 2021
- 4. Eric Matthes, "Python Crash Course, A Hands on Project Based Introduction to Programming", 2nd Edition, No Starch Press, 2019. https://www.python.org/
- 6. Martin C. Brown, "Python: The Complete Reference", 4th Edition, Mc-Graw Hill, 2018.

COs-PO's & PSO's MAPPING

CO'	PO's													PSO's	
s	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	3	2	ı	-	ı	-	-	2	2	3	3	-
2	3	3	3	3	2	-	-	-	-	-	2	2	3	-	-
3	3	3	3	3	2	-	-	-	-	-	2	-	3	-	-
4	2	2	-	2	2	-	-	-	-	-	1	-	3	-	-
5	1	2	-	-	1	-	-	-	-	-	1	-	2	-	-
AV g.	2	2	-	1	2	1	-	1	1	-	1	-	2	-	-

1 - low, 2 - medium, 3 - high, '-' - no correlation

அலகு I மொழி மற்றும் இலக்கியம்:

3

இந்திய மொழிக் குடும்பங்கள் – திராவிட மொழிகள் – தமிழ் ஒரு செம்மொழி – தமிழ் செவ்விலக்கியங்கள் - சங்க இலக்கியத்தின் சமயச் சார்பற்ற தன்மை – சங்க இலக்கியத்தில் பகிர்தல் அறம் – திருக்குறளில் மேலாண்மைக் கருத்துக்கள் – தமிழ்க் காப்பியங்கள், தமிழகத்தில் சமண பௌத்த சமயங்களின் தாக்கம் - பக்தி இலக்கியம், ஆழ்வார்கள் மற்றும் நாயன்மார்கள் – சிற்றிலக்கியங்கள் – தமிழில் நவீன இலக்கியத்தின் வளர்ச்சி – தமிழ் இலக்கிய வளர்ச்சியில் பாரதியார் மற்றும் பாரதிதாசன் ஆகியோரின் பங்களிப்பு.

அலகு II மரபு – பாறை ஓவியங்கள் முதல் நவீன ஓவியங்கள் வரை – சிற்பக் கலை:

நடுகல் முதல் நவீன சிற்பங்கள் வரை – ஐம்பொன் சிலைகள்– பழங்குடியினர் மற்றும் அவர்கள் தயாரிக்கும் கைவினைப் பொருட்கள், பொம்மைகள் – தேர் செய்யும் கலை – சுடுமண் சிற்பங்கள் – நாட்டுப்புறத் தெய்வங்கள் – குமரிமுனையில் திருவள்ளுவர் சிலை – இசைக் கருவிகள் – மிருதங்கம், பறை, வீணை, யாழ், நாதஸ்வரம் – தமிழர்களின் சமூக பொருளாதார வாழ்வில் கோவில்களின் பங்கு.

அலகு III நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்: 3 தெருக்கூத்து, கரகாட்டம், வில்லுப்பாட்டு, கணியான் கூத்து, ஒயிலாட்டம், தோல்பாவைக் கூத்து, சிலம்பாட்டம், வளரி, புலியாட்டம், தமிழர்களின் விளையாட்டுகள்.

அலகு IV தமிழர்களின் திணைக் கோட்பாடுகள்:

3

தமிழகத்தின் தாவரங்களும், விலங்குகளும் – தொல்காப்பியம் மற்றும் சங்க இலக்கியத்தில் அகம் மற்றும் புறக் கோட்பாடுகள் – தமிழர்கள் போற்றிய அறக்கோட்பாடு – சங்ககாலத்தில் தமிழகத்தில் எழுத்தறிவும், கல்வியும் – சங்ககால நகரங்களும் துறை முகங்களும் – சங்ககாலத்தில் ஏற்றுமதி மற்றும் இறக்குமதி – கடல்கடந்த நாடுகளில் சோழர்களின் வெற்றி.

அலகு V இந்திய தேசிய இயக்கம் மற்றும் இந்திய பண்பாட்டிற்குத் தமிழர்களின் பங்களிப்பு:

3

TOTAL: 15 PERIODS

இந்திய விடுதலைப்போரில் தமிழர்களின் பங்கு – இந்தியாவின் பிறப்பகுதிகளில் தமிழ்ப் பண்பாட்டின் தாக்கம் – சுயமரியாதை இயக்கம் – இந்திய மருத்துவத்தில், சித்த மருத்துவத்தின் பங்கு – கல்வெட்டுகள், கையெழுத்துப்படிகள் - தமிழ்ப் புத்தகங்களின் அச்சு வரலாறு.

TEXT-CUM-REFERENCE BOOKS

1. தமிழக வரலாறு – மக்களும் பண்பாடும் – கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).

- 2. கணினித் தமிழ் முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
- 3. கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)

- 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

GE3152

HERITAGE OF TAMILS

L T PC 1 0 0 1

UNIT I LANGUAGE AND LITERATURE

3

Language Families in India - Dravidian Languages - Tamil as a Classical Language - Classical Literature in Tamil - Secular Nature of Sangam Literature - Distributive Justice in Sangam Literature - Management Principles in Thirukural - Tamil Epics and Impact of Buddhism & Jainism in Tamil Land - Bakthi Literature Azhwars and Nayanmars - Forms of minor Poetry - Development of Modern literature in Tamil - Contribution of Bharathiyar and Bharathidhasan.

UNIT II HERITAGE - ROCK ART PAINTINGS TO MODERN ART – SCULPTURE 3

Hero stone to modern sculpture - Bronze icons - Tribes and their handicrafts - Art of temple car making - - Massive Terracotta sculptures, Village deities, Thiruvalluvar Statue at Kanyakumari, Making of musical instruments - Mridhangam, Parai, Veenai, Yazh and Nadhaswaram - Role of Temples in Social and Economic Life of Tamils.

UNIT III FOLK AND MARTIAL ARTS

3

Therukoothu, Karagattam, Villu Pattu, Kaniyan Koothu, Oyillattam, Leather puppetry, Silambattam, Valari, Tiger dance - Sports and Games of Tamils.

UNIT IV THINAI CONCEPT OF TAMILS

3

Flora and Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Literature - Aram Concept of Tamils - Education and Literacy during Sangam Age - Ancient Cities and Ports of Sangam Age - Export and Import during Sangam Age - Overseas Conquest of Cholas.

UNIT V CONTRIBUTION OF TAMILS TO INDIAN NATIONAL MOVEMENT AND INDIAN CULTURE

Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India – Self-Respect Movement - Role of Siddha Medicine in Indigenous Systems of Medicine – Inscriptions & Manuscripts – Print History of Tamil Books.

TEXT-CUM-REFERENCE BOOKS

TOTAL: 15 PERIODS

- 1. தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ் முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
- 3. கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை

வெளியீடு)

- 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

TOTAL: 60 PERIODS

COURSE OBJECTIVES:

- To understand the problem solving approaches.
- To learn the basic programming constructs in Python.
- To practice various computing strategies for Python-based solutions to real world problems.
- To use Python data structures lists, tuples, dictionaries.
- To do input/output with files in Python.

EXPERIMENTS:

Note: The examples suggested in each experiment are only indicative. The lab instructor is expected to design other problems on similar lines. The Examination shall not be restricted to the sample experiments listed here.

- 1. Identification and solving of simple real life or scientific or technical problems, and developing flow charts for the same. (Electricity Billing, Retail shop billing, Sin series, weight of a motorbike, Weight of a steel bar, compute Electrical Current in Three Phase AC Circuit, etc.)
- 2. Python programming using simple statements and expressions (exchange the values of two variables, circulate the values of n variables, distance between two points).
- 3. Scientific problems using Conditionals and Iterative loops. (Number series, Number Patterns, pyramid pattern)
- Implementing real-time/technical applications using Lists, Tuples. (Items present in a library/Components of a car/ Materials required for construction of a building –operations of list & tuples)
- 5. Implementing real-time/technical applications using Sets, Dictionaries. (Language, components of an automobile, Elements of a civil structure, etc.- operations of Sets & Dictionaries)
- 6. Implementing programs using Functions. (Factorial, largest number in a list, area of shape)
- 7. Implementing programs using Strings. (reverse, palindrome, character count, replacing characters)
- 8. Implementing programs using written modules and Python Standard Libraries (pandas, numpy. Matplotlib, scipy)
- 9. Implementing real-time/technical applications using File handling. (copy from one file to another, word count, longest word)
- 10. Implementing real-time/technical applications using Exception handling. (divide by zero error, voter's age validity, student mark range validation)
- 11. Exploring Pygame tool.
- 12. Developing a game activity using Pygame like bouncing ball, car race etc.

COURSE OUTCOMES:

On completion of the course, students will be able to:

- CO1: Develop algorithmic solutions to simple computational problems
- CO2: Develop and execute simple Python programs.
- CO3: Implement programs in Python using conditionals and loops for solving problems.
- CO4: Deploy functions to decompose a Python program.
- CO5: Process compound data using Python data structures.
- CO6: Utilize Python packages in developing software applications.

TEXT BOOKS:

- 1. Allen B. Downey, "Think Python: How to Think like a Computer Scientist", 2nd Edition, O'Reilly Publishers, 2016.
- 2. Karl Beecher, "Computational Thinking: A Beginner's Guide to Problem Solving and Programming", 1st Edition, BCS Learning & Development Limited, 2017.

REFERENCES:

- 1. Paul Deitel and Harvey Deitel, "Python for Programmers", Pearson Education, 1st Edition, 2021.
- 2. G Venkatesh and Madhavan Mukund, "Computational Thinking: A Primer for Programmers and Data Scientists", 1st Edition, Notion Press, 2021.
- 3. John V Guttag, "Introduction to Computation and Programming Using Python: With Applications to Computational Modeling and Understanding Data", Third Edition, MIT Press, 2021
- 4. Eric Matthes, "Python Crash Course, A Hands on Project Based Introduction to Programming", 2nd Edition, No Starch Press, 2019.
- 5. https://www.python.org/
- 6. Martin C. Brown, "Python: The Complete Reference", 4th Edition, Mc-Graw Hill, 2018.

COs- PO's & PSO's MAPPING

CO'	PO's												PSO's	3
S	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3	-	-	-	-	-	3	2	3	3
2	3	3	3	3	3	-	-	-	-	-	3	2	3	-
3	3	3	3	3	2	-	-	-	-	-	2	-	3	-
4	3	2	-	2	2	-	-	-	-	-	1	-	3	-
5	1	2	-	-	1	-	-	-	-	-	1	-	2	-
6	2	-	-	-	2	-	-	-	-	-	1	-	2	-
AV g.	2	3	3	3	2	-	-	-	-	-	2	2	3	3

1 - low, 2 - medium, 3 - high, '-' - no correlation

PHYSICS LABORATORY: (Any Seven Experiments)

COURSE OBJECTIVES:

- To learn the proper use of various kinds of physics laboratory equipment.
- To learn how data can be collected, presented and interpreted in a clear and concise manner.
- To learn problem solving skills related to physics principles and interpretation of experimental data.
- To determine error in experimental measurements and techniques used to minimize such error.
- To make the student as an active participant in each part of all lab exercises.
 - 1. Torsional pendulum Determination of rigidity modulus of wire and moment of inertia of regular and irregular objects.
 - 2. Simple harmonic oscillations of cantilever.
 - 3. Non-uniform bending Determination of Young's modulus
 - 4. Uniform bending Determination of Young's modulus
 - 5. Laser- Determination of the wave length of the laser using grating
 - 6. Air wedge Determination of thickness of a thin sheet/wire
 - 7. a) Optical fibre -Determination of Numerical Aperture and acceptance angle
 - b) Compact disc- Determination of width of the groove using laser.
 - 8. Acoustic grating- Determination of velocity of ultrasonic waves in liquids.
 - 9. Ultrasonic interferometer determination of the velocity of sound and compressibility of liquids
 - 10. Post office box -Determination of Band gap of a semiconductor.
 - 11. Photoelectric effect
 - 12. Michelson Interferometer.
 - 13. Melde's string experiment
 - 14. Experiment with lattice dynamics kit.

TOTAL: 30 PERIODS

COURSE OUTCOMES:

Upon completion of the course, the students should be able to

- Understand the functioning of various physics laboratory equipment.
- Use graphical models to analyze laboratory data.
- Use mathematical models as a medium for quantitative reasoning and describing physical reality.
- Access, process and analyze scientific information.
- Solve problems individually and collaboratively.

CO's-PO's & PSO's MAPPING

CO's					PO's	;							PSO's		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	3	1	1	-	-	•	-	-	-	-	-	-	•
2	3	3	2	1	1	-	-	-	-	-	-	-	-	1	-
3	3	2	3	1	1	-	-	-	-	-	-	-	-	1	-
4	3	3	2	1	1	-	-	-	-	-	-	-	-	1	-
5	3	2	3	1	1	-	-	•	-	-	-	-	-	-	•
AVG	3	2.4	2.6	1	1										

- 1-Low,2-Medium,3-High,"-"-no correlation
- Note: the average value of this course to be used for program articulation matrix.

CHEMISTRY LABORATORY: (Any seven experiments to be conducted)

COURSE OBJECTIVES:

- To inculcate experimental skills to test basic understanding of water quality parameters, such as, acidity, alkalinity, hardness, DO, chloride and copper.
- To induce the students to familiarize with electroanalytical techniques such as, pH metry, potentiometry and conductometry in the determination of impurities in aqueous solutions.
- To demonstrate the analysis of metals and alloys.
- To demonstrate the synthesis of nanoparticles
 - 1. Preparation of Na₂CO₃ as a primary standard and estimation of acidity of a water sample using the primary standard
 - 2. Determination of types and amount of alkalinity in water sample.
 - Split the first experiment into two
 - 3. Determination of total, temporary & permanent hardness of water by EDTA method.
 - 4. Determination of DO content of water sample by Winkler's method.
 - 5. Determination of chloride content of water sample by Argentometric method.
 - 6. Estimation of copper content of the given solution by lodometry.
 - 7. Estimation of TDS of a water sample by gravimetry.
 - 8. Determination of strength of given hydrochloric acid using pH meter.
 - 9. Determination of strength of acids in a mixture of acids using conductivity meter.
 - 10. Conductometric titration of barium chloride against sodium sulphate (precipitation titration)
 - 11. Estimation of iron content of the given solution using potentiometer.
 - 12. Estimation of sodium /potassium present in water using flame photometer.
 - 13. Preparation of nanoparticles (TiO₂/ZnO/CuO) by Sol-Gel method.
 - 14. Estimation of Nickel in steel
 - 15. Proximate analysis of Coal

TOTAL: 30 PERIODS

COURSE OUTCOMES:

- To analyse the quality of water samples with respect to their acidity, alkalinity, hardness and DO
- To determine the amount of metal ions through volumetric and spectroscopic techniques
- To analyse and determine the composition of alloys.
- To learn simple method of synthesis of nanoparticles
- To quantitatively analyse the impurities in solution by electroanalytical techniques

TEXT BOOK:

1. J. Mendham, R. C. Denney, J.D. Barnes, M. Thomas and B. Sivasankar, Vogel's Textbook of Quantitative Chemical Analysis (2009).

CO-PO & PSO MAPPING

			P	0									PS	80	
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	-	1	-	-	2	2	-	-	-	-	2	-	-	-
2	3	1	2	-	-	1	2	ı	-	-	-	1	-	-	-
3	3	2	1	1	-	-	1	-	-	-	-	-	-	-	-
4	2	1	2	-	-	2	2	-	-	-	-	-	-	-	-
5	2	1	2	-	1	2	2	-	-	-	-	1	-	-	-
A vg	2.6	1.3	1.6	1	1	1.4	1.8	-	-	-	-	1.3	-	-	-

ENGLISH LABORATORY

L T P C 0 0 2 1

OBJECTIVES:

- To improve the communicative competence of learners
- To help learners use language effectively in academic /work contexts
- To develop various listening strategies to comprehend various types of audio materials like lectures, discussions, videos etc.
- To build on students' English language skills by engaging them in listening, speaking and grammar learning activities that are relevant to authentic contexts.
- To use language efficiently in expressing their opinions via various media.

UNIT I INTRODUCTION TO FUNDAMENTALS OF COMMUNICATION

6

Listening for general information-specific details- conversation: Introduction to classmates - Audio / video (formal & informal); Telephone conversation; Listening to voicemail & messages; Listening and filling a form. Speaking - making telephone calls-Self Introduction; Introducing a friend; - politeness strategies-making polite requests, making polite offers, replying to polite requests and offers- understanding basic instructions (filling out a bank application for example).

UNIT II NARRATION AND SUMMATION

6

Listening - Listening to podcasts, anecdotes / stories / event narration; documentaries and interviews with celebrities. Speaking - Narrating personal experiences / events-Talking about current and temporary situations & permanent and regular situations* - describing experiences and feelings- engaging in small talk- describing requirements and abilities.

UNIT III DESCRIPTION OF A PROCESS / PRODUCT

6

Listening - Listen to product and process descriptions; a classroom lecture; and advertisements about products. Speaking – Picture description- describing locations in workplaces- Giving instruction to use the product- explaining uses and purposes- Presenting a product- describing shapes and sizes and weights-talking about quantities(large & small)-talking about precautions.

UNIT IV CLASSIFICATION AND RECOMMENDATIONS

6

Listening – Listening to TED Talks; Listening to lectures - and educational videos. Speaking – Small Talk; discussing and making plans-talking about tasks-talking about progress- talking about positions and directions of movement-talking about travel preparations- talking about transportation-

UNIT V EXPRESSION

6

Listening – Listening to debates/ discussions; different viewpoints on an issue; and panel discussions. Speaking –making predictions- talking about a given topic-giving opinions- understanding a website-describing processes

TOTAL: 30 PERIODS

LEARNING OUTCOMES:

At the end of the course, learners will be able

- To listen to and comprehend general as well as complex academic information
- To listen to and understand different points of view in a discussion
- To speak fluently and accurately in formal and informal communicative contexts
- To describe products and processes and explain their uses and purposes clearly and accurately
- To express their opinions effectively in both formal and informal discussions

ASSESSMENT PATTERN

- One online / app based assessment to test listening /speaking
- End Semester **ONLY** listening and speaking will be conducted online.
- Proficiency certification is given on successful completion of listening and speaking internal test and end semester exam.

CO-PO & PSO MAPPING

СО	PO's													PSO's	3
's	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	3	1	3	3	3	3	3	3	3	1	-	-
2	3	3	3	3	1	3	3	3	3	3	3	3	ı	-	-
3	3	3	3	3	1	3	3	3	3	3	3	3	ı	-	-
4	3	3	3	3	1	3	3	3	3	3	3	3	ı	-	-
5	3	3	3	3	1	3	3	3	3	3	3	3	-	-	-
AV	3	3	3	3	1	3	3	3	3	3	3	3			
g.													-	-	•

1-low, 2-medium, 3-high, '-"- no correlation

Note: The average value of this course to be used for program articulation matrix.

LTPC 2 0 0 2

OBJECTIVES:

- To engage learners in meaningful language activities to improve their reading and writing skills
- To learn various reading strategies and apply in comprehending documents in professional context.
- To help learners understand the purpose, audience, contexts of different types of writing
- To develop analytical thinking skills for problem solving in communicative contexts
- To demonstrate an understanding of job applications and interviews for internship and placements

MAKING COMPARISONS UNIT I

6

6

Reading - Reading advertisements, user manuals, brochures; Writing - Professional emails, Email etiquette - Compare and Contrast Essay; Grammar - Mixed Tenses, Prepositional phrases

UNIT II EXPRESSING CAUSAL RELATIONS IN SPEAKING AND WRITING

Reading - Reading longer technical texts- Cause and Effect Essays, and Letters / emails of complaint, Writing - Writing responses to complaints. Grammar - Active Passive Voice transformations, Infinitive and Gerunds

UNIT III PROBLEM SOLVING

6

Reading - Case Studies, excerpts from literary texts, news reports etc. Writing - Letter to the Editor, Checklists, Problem solution essay / Argumentative Essay. Grammar - Error correction; If conditional sentences

REPORTING OF EVENTS AND RESEARCH **UNIT IV**

6

Reading -Newspaper articles; Writing - Recommendations, Transcoding, Accident Report, Survey Report Grammar - Reported Speech, Modals Vocabulary - Conjunctions- use of prepositions

UNIT V THE ABILITY TO PUT IDEAS OR INFORMATION COGENTLY

Reading - Company profiles, Statement of Purpose, (SOP), an excerpt of interview with professionals; Writing - Job / Internship application - Cover letter & Resume; Grammar - Numerical adjectives, Relative Clauses. **TOTAL: 30 PERIODS**

OUTCOMES:

At the end of the course, learners will be able

- To compare and contrast products and ideas in technical texts.
- To identify and report cause and effects in events, industrial processes through technical texts
- To analyse problems in order to arrive at feasible solutions and communicate them in the written
- To present their ideas and opinions in a planned and logical manner
- To draft effective resumes in the context of job search.

TEXT BOOKS:

- English for Engineers & Technologists (2020 edition) Orient Blackswan Private Ltd. Department of 1. English. Anna University.
- 2. English for Science & Technology Cambridge University Press 2021.
- Authored by Dr. Veena Selvam, Dr. Sujatha Priyadarshini, Dr. Deepa Mary Francis, Dr. KN. Shoba, 3. and Dr. Lourdes Joevani, Department of English, Anna University.

REFERENCES:

- 1. Raman. Meenakshi, Sharma. Sangeeta (2019). Professional English. Oxford university press. New
- 2. Improve Your Writing ed. V.N. Arora and Laxmi Chandra, Oxford Univ. Press, 2001, NewDelhi.

- 3. Learning to Communicate Dr. V. Chellammal. Allied Publishers, New Delhi, 2003
- 4. Business Correspondence and Report Writing by Prof. R.C. Sharma & Krishna Mohan, Tata McGraw Hill & Co. Ltd., 2001, New Delhi.
- 5. Developing Communication Skills by Krishna Mohan, Meera Bannerji- Macmillan India Ltd. 1990, Delhi.

ASSESSMENT PATTERN

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence.

CO-PO & PSO MAPPING

						<u> </u>									
CO			P	0									PS	SO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	3	3	3	3	3	2	3	3	3	-	-	-
2	3	3	3	3	3	3	3	3	2	3	3	3	-	-	-
3	3	3	3	3	3	3	3	3	2	3	3	3	-	-	-
4	3	3	3	3	2	3	3	3	2	3	3	3	-	-	-
5	-	-	-	-	-	-	-	-	3	3	3	3	-	-	-
AV	3	3	3	3	2.	3	3	3	2.2	3	3	3	-	-	-
g.					7 5										

- 1-low, 2-medium, 3-high, '-"- no correlation
- Note: The average value of this course to be used for program articulation matrix.

L T P C 3 1 0 4

COURSE OBJECTIVES:

- This course aims at providing the necessary basic concepts of a few statistical and numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology.
- To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems.
- To introduce the basic concepts of solving algebraic and transcendental equations.
- To introduce the numerical techniques of interpolation in various intervals and numerical techniques of differentiation and integration which plays an important role in engineering and technology disciplines.
- To acquaint the knowledge of various techniques and methods of solving ordinary differential equations.

UNIT I TESTING OF HYPOTHESIS

9+3

Sampling distributions - Tests for single mean, proportion and difference of means (Large and small samples) - Tests for single variance and equality of variances - Chi square test for goodness of fit - Independence of attributes.

UNIT II DESIGN OF EXPERIMENTS

9+3

One way and two way classifications - Completely randomized design – Randomized block design – Latin square design - 2² factorial design.

UNIT III SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS

9+3

Solution of algebraic and transcendental equations - Fixed point iteration method - Newton Raphson method- Solution of linear system of equations - Gauss elimination method - Pivoting - Gauss Jordan method - Iterative methods of Gauss Jacobi and Gauss Seidel - Eigenvalues of a matrix by Power method and Jacobi's method for symmetric matrices.

UNIT IV INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICAL INTEGRATION

9 + 3

Lagrange's and Newton's divided difference interpolations – Newton's forward and backward difference interpolation – Approximation of derivates using interpolation polynomials – Numerical single and double integrations using Trapezoidal and Simpson's 1/3 rules.

UNIT V NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 9+3

Single step methods: Taylor's series method - Euler's method - Modified Euler's method - Fourth order Runge-Kutta method for solving first order differential equations - Multi step methods: Milne's and Adams - Bash forth predictor corrector methods for solving first order differential equations.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

Upon successful completion of the course, students will be able to:

- Apply the concept of testing of hypothesis for small and large samples in real life problems.
- Apply the basic concepts of classifications of design of experiments in the field of agriculture.
- Appreciate the numerical techniques of interpolation in various intervals and apply the numerical techniques of differentiation and integration for engineering problems.
- Understand the knowledge of various techniques and methods for solving first and second order ordinary differential equations.
- Solve the partial and ordinary differential equations with initial and boundary conditions by using certain techniques with engineering applications.

TEXT BOOKS:

- 1. Grewal, B.S., and Grewal, J.S., "Numerical Methods in Engineering and Science", Khanna Publishers, 10th Edition, New Delhi, 2015.
- 2. Johnson, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 8th Edition, 2015.

REFERENCES:

- 1. Burden, R.L and Faires, J.D, "Numerical Analysis", 9th Edition, Cengage Learning, 2016.
- 2. Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi. 8th Edition. 2014.
- 3. Gerald. C.F. and Wheatley. P.O. "Applied Numerical Analysis" Pearson Education, Asia, New Delhi, 7th Edition, 2007.
- 4. Gupta S.C. and Kapoor V. K., "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi, 12th Edition, 2020.
- 5. Spiegel. M.R., Schiller. J. and Srinivasan. R.A., "Schaum's Outlines on Probability and Statistics ", Tata McGraw Hill Edition, 4th Edition, 2012.
- 6. Walpole. R.E., Myers. R.H., Myers. S.L. and Ye. K., "Probability and Statistics for Engineers and Scientists", 9th Edition, Pearson Education, Asia, 2010.

	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	1	1	1	0	0	0	2	0	2	3	-	-	-
CO2	3	3	1	1	1	0	0	0	2	0	2	3	-	-	-
CO3	3	3	1	1	1	0	0	0	2	0	2	3	-	-	-
CO4	3	3	1	1	1	0	0	0	2	0	2	3	-	-	-
CO5	3	3	1	1	1	0	0	0	2	0	2	3	-	-	-
Avg	3	3	1	1	1	0	0	0	2	0	2	3	-	-	-

COURSE OBJECTIVES:

- To make the students to understand the basics of crystallography and its importance in studying materials properties.
- To understand the electrical properties of materials including free electron theory, applications of quantum mechanics and magnetic materials.
- To instil knowledge on physics of semiconductors, determination of charge carriers and device applications
- To establish a sound grasp of knowledge on different optical properties of materials, optical displays and applications
- To inculcate an idea of significance of nano structures, quantum confinement and ensuing nano device applications.

UNIT I CRYSTALLOGRAPHY

9

Crystal structures: BCC, FCC and HCP – directions and planes - linear and planar densities – crystal imperfections- edge and screw dislocations – grain and twin boundaries - Burgers vector and elastic strain energy- Slip systems, plastic deformation of materials - Polymorphism – phase changes – nucleation and growth – homogeneous and heterogeneous nucleation.

UNIT II ELECTRICAL AND MAGNETIC PROPERTIES OF MATERIALS

Classical free electron theory - Expression for electrical conductivity – Thermal conductivity, expression - Quantum free electron theory :Tunneling – degenerate states – Fermi- Dirac statistics – Density of energy states – Electron in periodic potential – Energy bands in solids – tight binding approximation - Electron effective mass – concept of hole. Magnetic materials: Dia, para and ferromagnetic effects – paramagnetism in the conduction electrons in metals – exchange interaction and ferromagnetism – quantum interference devices – GMR devices.

UNIT III SEMICONDUCTORS AND TRANSPORT PHYSICS

9

Intrinsic Semiconductors – Energy band diagram – direct and indirect band gap semiconductors – Carrier concentration in intrinsic semiconductors – extrinsic semiconductors - Carrier concentration in N-type & P-type semiconductors – Variation of carrier concentration with temperature – Carrier transport in Semiconductors: Drift, mobility and diffusion – Hall effect and devices – Ohmic contacts – Schottky diode.

UNIT IV OPTICAL PROPERTIES OF MATERIALS

9

Classification of optical materials – Optical processes in semiconductors: optical absorption and emission, charge injection and recombination, optical absorption, loss and gain. Optical processes in quantum wells – Optoelectronic devices: light detectors and solar cells – light emitting diode – laser diode - optical processes in organic semiconductor devices –excitonic state – Electro-optics and nonlinear optics: Modulators and switching devices – plasmonics.

UNIT V NANOELECTRONIC DEVICES

9

TOTAL: 45 PERIODS

Quantum confinement – Quantum structures – quantum wells, wires and dots – Zener-Bloch oscillations – Resonant tunneling – quantum interference effects - mesoscopic structures - Single electron phenomena – Single electron Transistor. Semiconductor photonic structures – 1D, 2D and 3D photonic crystal. Active and passive optoelectronic devices – photo processes – spintronics – carbon nanotubes: Properties and applications.

COURSE OUTCOMES:

At the end of the course, the students should be able to

- know basics of crystallography and its importance for varied materials properties
- gain knowledge on the electrical and magnetic properties of materials and their applications

- understand clearly of semiconductor physics and functioning of semiconductor devices
- understand the optical properties of materials and working principles of various optical devices
- appreciate the importance of functional nanoelectronic devices.

TEXT BOOKS:

- 1. V.Raghavan. Materials Science and Engineering: A First Course, Prentice Hall India Learning Private Limited, 2015.
- 2. S.O. Kasap, Principles of Electronic Materials and Devices, Mc-Graw Hill, 2018.
- 3. Jasprit Singh, Semiconductor Devices: Basic Principles, Wiley (India), 2007.
- 4. Jasprit Singh, Semiconductor Optoelectronics: Physics and Technology, Mc-Graw Hill India (2019)
- 5. G.W.Hanson. Fundamentals of Nanoelectronics. Pearson Education (Indian Edition), 2009.

REFERENCES:

- 1. R.Balasubramaniam, Callister's Materials Science and Engineering. Wiley (Indian Edition), 2014.
- 2. Wendelin Wright and Donald Askeland, Essentials of Materials Science and Engineering, CL Engineering, 2013.
- 3. Robert F.Pierret. Semiconductor Device Fundamentals. Pearson, 2006
- 4. Pallab Bhattacharya, Semiconductor Optoelectronic Devices, Pearson, 2017
- 5. Ben Rogers, Jesse Adams and Sumita Pennathur, Nanotechnology: Understanding Small Systems, CRC Press, 2017.

CO's-PO's & PSO's MAPPING

CO's				PSO's											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	2	1	1	-	-	-	-	-	-	-	-	-
2	3	2	1	1	2	1	1	-	-	-	-	-	-	-	-
3	3	2	2	2	2	1	-	-	-	-	-	-	-	-	-
4	3	2	2	1	2	2	-	-	-	-	-	1	-	-	-
5	3	2	2	1	2	1	-	-	-	-	-	-	-	-	-
AVG	3	2	1.6	1.4	1.8	1.2	1	-	-	-	-	1	-	-	-

1-Low,2-Medium,3-High,"-"-no correlation

Note: the average value of this course to be used for program articulation matrix.

COURSE OBJECTIVES:

- To introduce the basics of electric circuits and analysis
- To impart knowledge in the basics of working principles and application of electrical machines
- To introduce analog devices and their characteristics
- To educate on the fundamental concepts of digital electronics
- To introduce the functional elements and working of measuring instruments

UNIT I ELECTRICAL CIRCUITS

9

DC Circuits: Circuit Components: Conductor, Resistor, Inductor, Capacitor – Ohm's Law - Kirchhoff's Laws –Independent and Dependent Sources – Simple problems- Nodal Analysis, Mesh analysis with Independent sources only (Steady state)

Introduction to AC Circuits and Parameters: Waveforms, Average value, RMS Value, Instantaneous power, real power, reactive power and apparent power, power factor – Steady state analysis of RLC circuits (Simple problems only)

UNIT II ELECTRICAL MACHINES

9

Construction and Working principle- DC Separately and Self excited Generators, EMF equation, Types and Applications. Working Principle of DC motors, Torque Equation, Types and Applications. Construction, Working principle and Applications of Transformer, Three phase Alternator, Synchronous motor and Three Phase Induction Motor.

UNIT III ANALOG ELECTRONICS

9

Resistor, Inductor and Capacitor in Electronic Circuits- Semiconductor Materials: Silicon & Germanium – PN Junction Diodes, Zener Diode – Characteristics Applications – Bipolar Junction Transistor-Biasing, JFET, SCR, MOSFET, IGBT – Types, I-V Characteristics and Applications, Rectifier and Inverters

UNIT IV DIGITAL ELECTRONICS

ç

Review of number systems, binary codes, error detection and correction codes, Combinational logic - representation of logic functions-SOP and POS forms, K-map representations - minimization using K maps (Simple Problems only)

UNIT V MEASUREMENTS AND INSTRUMENTATION

9

TOTAL: 45 PERIODS

Functional elements of an instrument, Standards and calibration, Operating Principle, types -Moving Coil and Moving Iron meters, Measurement of three phase power, Energy Meter, Instrument Transformers-CT and PT, DSO- Block diagram- Data acquisition.

COURSE OUTCOMES:

After completing this course, the students will be able to

- 1. Compute the electric circuit parameters for simple problems
- 2. Explain the working principle and applications of electrical machines
- 3. Analyze the characteristics of analog electronic devices
- 4. Explain the basic concepts of digital electronics
- 5. Explain the operating principles of measuring instruments

TEXT BOOKS:

- 1. Kothari DP and I.J Nagrath, "Basic Electrical and Electronics Engineering", Second Edition, McGraw Hill Education, 2020
- 2. S.K. Bhattacharya "Basic Electrical and Electronics Engineering", Pearson Education, Second Edition, 2017.
- 3. Sedha R.S., "A text book book of Applied Electronics", S. Chand & Co., 2008

- 4. James A. Svoboda, Richard C. Dorf, "Dorf's Introduction to Electric Circuits", Wiley, 2018.
- 5. A.K. Sawhney, Puneet Sawhney 'A Course in Electrical & Electronic Measurements & Instrumentation', Dhanpat Rai and Co, 2015.

REFERENCES:

- 1. Kothari DP and I.J Nagrath, "Basic Electrical Engineering", Fourth Edition, McGraw Hill Education, 2019.
- 2. Thomas L. Floyd, 'Digital Fundamentals', 11th Edition, Pearson Education, 2017.
- 3. Albert Malvino, David Bates, 'Electronic Principles, McGraw Hill Education; 7th edition, 2017
- 4. Mahmood Nahvi and Joseph A. Edminister, "Electric Circuits", Schaum' Outline Series, McGraw Hill, 2002.
- 5. H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw-Hill, New Delhi, 2010

COs/POs&PS				PSOs											
Os	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	2	1					1				2			1
CO2	2	2	1					1				2			1
CO3	2	1	1					1				2			1
CO4	2	2	1					1				2			1
CO5	2	2	1					1				2			1
CO/PO & PSO Average	2	1.8	1					1				2			1

COURSE OBJECTIVES:

The main learning objective of this course is to prepare the students for:

- 1. Drawing engineering curves.
- 2. Drawing freehand sketch of simple objects.
- 3. Drawing orthographic projection of solids and section of solids.
- 4. Drawing development of solids
- 5. Drawing isometric and perspective projections of simple solids.

CONCEPTS AND CONVENTIONS (Not for Examination)

Importance of graphics in engineering applications - Use of drafting instruments - BIS conventions and specifications — Size, layout and folding of drawing sheets — Lettering and dimensioning.

UNIT I PLANE CURVES

6+12

Basic Geometrical constructions, Curves used in engineering practices: Conics — Construction of ellipse, parabola and hyperbola by eccentricity method — Construction of cycloid — construction of involutes of square and circle — Drawing of tangents and normal to the above curves.

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACE

6+12

Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III PROJECTION OF SOLIDS AND FREEHAND SKETCHING

6+12

Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes and parallel to the other by rotating object method. Visualization concepts and Free Hand sketching: Visualization principles —Representation of Three Dimensional objects — Layout of views- Freehand sketching of multiple views from pictorial views of objects. Practicing three dimensional modeling of simple objects by CAD Software (Not for examination)

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES

6 + 12

Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other — obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids — Prisms, pyramids cylinders and cones.

Practicing three dimensional modeling of simple objects by CAD Software (Not for examination)

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS

6+12

TOTAL: (L=30; P=60) 90 PERIODS

Principles of isometric projection — isometric scale - Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions - Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method.

Practicing three dimensional modeling of isometric projection of simple objects by CAD Software (Not for examination)

OUTCOMES:

On successful completion of this course, the student will be able to

- Use BIS conventions and specifications for engineering drawing.
- Construct the conic curves, involutes and cycloid.
- Solve practical problems involving projection of lines.
- Draw the orthographic, isometric and perspective projections of simple solids.
- Draw the development of simple solids.

TEXT BOOK:

- 1. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 53rd Edition, 2019.
- 2. Natrajan K.V., "A Text Book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2018.
- 3. Parthasarathy, N. S. and Vela Murali, "Engineering Drawing", Oxford University Press, 2015

REFERENCES:

- 1. Basant Agarwal and Agarwal C.M., "Engineering Drawing", McGraw Hill, 2nd Edition, 2019.
- 2. Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Publications, Bangalore, 27th Edition, 2017.
- 3. Luzzader, Warren.J. and Duff, John M., "Fundamentals of Engineering Drawing with an introduction to Interactive Computer Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd. New Delhi. 2005.
- 4. Parthasarathy N. S. and Vela Murali, "Engineering Graphics", Oxford University, Press, New Delhi, 2015.
- 5. Shah M.B., and Rana B.C., "Engineering Drawing", Pearson Education India, 2nd Edition, 2009.
- 6. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2008.

Publication of Bureau of Indian Standards:

- 1. IS 10711 2001: Technical products Documentation Size and lay out of drawing sheets.
- 2. IS 9609 (Parts 0 & 1) 2001: Technical products Documentation Lettering.
- 3. IS 10714 (Part 20) 2001 & SP 46 2003: Lines for technical drawings.
- 4. IS 11669 1986 & SP 46 —2003: Dimensioning of Technical Drawings.
- 5. IS 15021 (Parts 1 to 4) 2001: Technical drawings Projection Methods.

Special points applicable to University Examinations on Engineering Graphics:

- 1. There will be five questions, each of either or type covering all units of the syllabus.
- 2. All questions will carry equal marks of 20 each making a total of 100.
- 3. The answer paper shall consist of drawing sheets of A3 size only. The students will be permitted to use appropriate scale to fit solution within A3 size.
- 4. The examination will be conducted in appropriate sessions on the same day

СО						Р	0						PSO				
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	3	1	2		2					3		2	2	2			
2	3	1	2		2					3		2	2	2			
3	3	1	2		2					3		2	2	2			
4	3	1	2		2					3		2	2	2			
5	3	1	2		2					3		2	2	2			
Avg.	3	1	2		2					3		2	2	2			
Low (1)	; M	ledium	n (2);	Hi	gh (3)												

நெசவு மற்றும் பானைத் தொழில்நுட்பம்: அலகு l

3

சங்க காலத்தில் நெசவுத் தொழில் – பானைத் தொழில்நுட்பம் - கருப்பு சிவப்பு பாண்டங்கள் – பாண்டங்களில் கீறல் குறியீடுகள்.

வடிவமைப்பு மற்றும் கட்டிடத் தொழில்நுட்பம்: அலகு II

3

சங்க காலத்தில் வடிவமைப்பு மற்றும் கட்டுமானங்கள் & சங்க காலத்தில் வீட்டுப் பொருட்களில் வடிவமைப்பு- சங்க காலத்தில் கட்டுமான பொருட்களும் நடுகல்லும் – சிலப்பதிகாரத்தில் மேடை அமைப்பு பற்றிய விவரங்கள் - மாமல்லபுரச் சிற்பங்களும், கோவில்களும் – சோழர் காலத்துப் பெருங்கோயில்கள் மற்றும் பிற வழிபாட்டுத் தலங்கள் – நாயக்கர் காலக் கோயில்கள் - மாதிரி கட்டமைப்புகள் பற்றி அறிதல், மதுரை மீனாட்சி அம்மன் ஆலயம் மற்றும் திருமலை நாயக்கர் மஹால் – செட்டிநாட்டு வீடுகள் – பிரிட்டிஷ் காலத்தில் சென்னையில் இந்தோ-சாரோசெனிக் கட்டிடக் கலை.

உற்பத்தித் தொழில் நுட்பம்: அலகு III

3

3

கப்பல் கட்டும் கலை – உலோகவியல் – இரும்புத் தொழிற்சாலை – இரும்பை உருக்குதல், எஃகு – வரலாற்றுச் சான்றுகளாக செம்பு மற்றும் தங்க நாணயங்கள் – நாணயங்கள் அச்சடித்தல் – மணி உருவாக்கும் தொழிற்சாலைகள் – கல்மணிகள், கண்ணாடி மணிகள் – சுடுமண் மணிகள் – சங்கு மணிகள் – எலும்புத்துண்டுகள் – தொல்லியல் சான்றுகள் – சிலப்பதிகாரத்தில் மணிகளின் வகைகள்.

வேளாண்மை மற்றும் நீர்ப்பாசனத் தொழில் நுட்பம்: அலகு IV

அணை, ஏரி, குளங்கள், மதகு – சோழர்காலக் குமுழித் தூம்பின் முக்கியத்துவம் – கால்நடை பராமரிப்பு – கால்நடைகளுக்காக வடிவமைக்கப்பட்ட கிணறுகள் – வேளாண்மை மற்றும் வேளாண்மைச் சார்ந்த செயல்பாடுகள் – கடல்சார் அறிவு – மீன்வளம் – முத்து மற்றும் முத்துக்குளித்தல் – பெருங்கடல் குறித்த பண்டைய அறிவு – அறிவுசார் சமூகம்.

அறிவியல் தமிழ் மற்றும் கணித்தமிழ்:

3

அறிவியல் தமிழின் வளர்ச்சி –கணித்தமிழ் வளர்ச்சி - தமிழ் நூல்களை மின்பதிப்பு செய்தல் – தமிழ் மென்பொருட்கள் உருவாக்கம் – தமிழ் இணையக் கல்விக்கழகம் – தமிழ் மின் நூலகம் – இணையத்தில் தமிழ் அகராதிகள் – சொற்குவைத் திட்டம்.

TOTAL: 15 PERIODS

TEXT-CUM-REFERENCE BOOKS

- 1. தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ் முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
- 3. கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)

- 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

GE3252

TAMILS AND TECHNOLOGY

LTPC

1001

UNIT I WEAVING AND CERAMIC TECHNOLOGY

3

Weaving Industry during Sangam Age – Ceramic technology – Black and Red Ware Potteries (BRW) – Graffiti on Potteries.

UNIT II DESIGN AND CONSTRUCTION TECHNOLOGY

3

Designing and Structural construction House & Designs in household materials during Sangam Age - Building materials and Hero stones of Sangam age – Details of Stage Constructions in Silappathikaram - Sculptures and Temples of Mamallapuram - Great Temples of Cholas and other worship places - Temples of Nayaka Period - Type study (Madurai Meenakshi Temple) - Thirumalai Nayakar Mahal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras during British Period.

UNIT III MANUFACTURING TECHNOLOGY

3

Art of Ship Building - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and gold- Coins as source of history - Minting of Coins - Beads making-industries Stone beads -Glass beads - Terracotta beads -Shell beads/ bone beats - Archeological evidences - Gem stone types described in Silappathikaram.

UNIT IV AGRICULTURE AND IRRIGATION TECHNOLOGY

3

Dam, Tank, ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry - Wells designed for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fisheries – Pearl - Conche diving - Ancient Knowledge of Ocean - Knowledge Specific Society.

UNIT V SCIENTIFIC TAMIL & TAMIL COMPUTING

3

Development of Scientific Tamil - Tamil computing - Digitalization of Tamil Books - Development of Tamil Software - Tamil Virtual Academy - Tamil Digital Library - Online Tamil Dictionaries - Sorkuvai Project.

TOTAL: 15 PERIODS

TEXT-CUM-REFERENCE BOOKS

- 1. தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ் முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
- 3. கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

NCC CREDIT COURSE LEVEL 1*

NX32	51 (ARMY WING) NCC Credit Course Level - I	L 2	T 0	P 0	
NCC NCC NCC NCC NCC	2 Incentives 3 Duties of NCC Cadet				6 1 2 1 2
NATI NI 1 NI 2 NI 3 NI 4	ONAL INTEGRATION AND AWARENESS National Integration: Importance & Necessity Factors Affecting National Integration Unity in Diversity & Role of NCC in Nation Building Threats to National Security				4 1 1 1
PERS PD PD 2 PD 3	SONALITY DEVELOPMENT 1 Self-Awareness, Empathy, Critical & Creative Thinking, E Problem Solving Communication Skills Group Discussion: Stress & Emotions	Decisio	n Mal	king a	7 and 2 3 2
	DERSHIP	al Valu	aa 11		5
L 2	Leadership Capsule: Traits, Indicators, Motivation, Mora Code Case Studies: Shivaji, Jhasi Ki Rani	ai vaiu	es, H	onoui	3 2
SOCI SS 1 SS 4 SS 5 SS 6 SS 7	AL SERVICE AND COMMUNITY DEVELOPMENT Basics, Rural Development Programmes, NGOs, Contribution Protection of Children and Women Safety Road / Rail Travel Safety New Initiatives Cyber and Mobile Security Awareness	ion of Y	outh'		8 3 1 1 2 1
		TOTAI	_: 30	PERI	ods
NX3252	NCC Credit Course Level 1* (NAVAL WING) NCC Credit Course Level - I	L	т	Р	С
NCC GEN NCC 1 NCC 2 NCC 3 NCC 4	,	2	0	0	2 6 1 2 1 2
NATIONA NI 1 NI 2 NI 3 NI 4	L INTEGRATION AND AWARENESS National Integration: Importance & Necessity Factors Affecting National Integration Unity in Diversity & Role of NCC in Nation Building Threats to National Security				4 1 1 1

PD 1	Solf Awareness Empathy Critical & Creative Thinking Decision I	Makina	n and	Drol	/ olom
PD I	Self-Awareness, Empathy, Critical & Creative Thinking, Decision I Solving	viakiriç	j aliu	FIUI	2
PD 2	Communication Skills				3
PD 3	Group Discussion: Stress & Emotions				2
LEADERS	HIP				5
L 1	Leadership Capsule: Traits, Indicators, Motivation, Moral Values,	Honou	r Co		3
L 2	Case Studies: Shivaji, Jhasi Ki Rani				2
SOCIAL S	ERVICE AND COMMUNITY DEVELOPMENT				8
SS 1	Basics, Rural Development Programmes, NGOs, Contribution of	Youth			3
SS 4 SS 5	Protection of Children and Women Safety Road / Rail Travel Safety				1 1
SS 6	New Initiatives				2
SS 7	Cyber and Mobile Security Awareness				1
		TOT	AL:	30 P	ERIODS
	NCC Credit Course Level 1*				
NX3253	(AIR FORCE WING) NCC Credit Course Level - I	L 2	T 0	P 0	C 2
NCC GEN	ERAL				6
NCC 1	Aims, Objectives & Organization of NCC				1
NCC 2 NCC 3	Incentives Duties of NCC Cadet				2 1
NCC 4	NCC Camps: Types & Conduct				2
_	INTEGRATION AND AWARENESS				4
NI 1 NI 2	National Integration: Importance & Necessity Factors Affecting National Integration				1 1
NI 3	Unity in Diversity & Role of NCC in Nation Building				1
NI 4	Threats to National Security				1
	LITY DEVELOPMENT				7
PD 1	Self-Awareness, Empathy, Critical & Creative Thinking, Decision Solving	Makin	g and	l Pro	blem 2
PD 2	Communication Skills				3
PD 3	Group Discussion: Stress & Emotions				2
LEADERS			0		5
L 1 L 2	Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Case Studies: Shivaji, Jhasi Ki Rani	Honou	ır Co	de	3 2
SOCIAL S	ERVICE AND COMMUNITY DEVELOPMENT				8
SS 1	Basics, Rural Development Programmes, NGOs, Contribution of	Youth			3
SS 4 SS 5	Protection of Children and Women Safety Road / Rail Travel Safety				1 1
SS 6	New Initiatives				2
SS 7	Cyber and Mobile Security Awareness				1

TOTAL: 30 PERIODS

0 0 4 2

COURSE OBJECTIVES:

The main learning objective of this course is to provide hands on training to the students in:

- Drawing pipe line plan; laying and connecting various pipe fittings used in common household plumbing work; Sawing; planing; making joints in wood materials used in common household wood work.
- 2. Wiring various electrical joints in common household electrical wire work.
- 3. Welding various joints in steel plates using arc welding work; Machining various simple processes like turning, drilling, tapping in parts; Assembling simple mechanical assembly of common household equipments; Making a tray out of metal sheet using sheet metal work.
- 4. Soldering and testing simple electronic circuits; Assembling and testing simple electronic components on PCB.

GROUP - A (CIVIL & ELECTRICAL)

PART I CIVIL ENGINEERING PRACTICES PLUMBING WORK:

15

- a) Connecting various basic pipe fittings like valves, taps, coupling, unions, reducers, elbows and other components which are commonly used in household.
- b) Preparing plumbing line sketches.
- c) Laying pipe connection to the suction side of a pump
- d) Laying pipe connection to the delivery side of a pump.
- e) Connecting pipes of different materials: Metal, plastic and flexible pipes used in household appliances.

WOOD WORK:

- a) Sawing,
- b) Planing and
- c) Making joints like T-Joint, Mortise joint and Tenon joint and Dovetail joint.

Wood Work Study:

- a) Studying joints in door panels and wooden furniture
- b) Studying common industrial trusses using models.

PART II ELECTRICAL ENGINEERING PRACTICES

15

- a) Introduction to switches, fuses, indicators and lamps Basic switch board wiring with lamp, fan and three pin socket
- b) Staircase wiring
- Fluorescent Lamp wiring with introduction to CFL and LED types.
- d) Energy meter wiring and related calculations/ calibration
- e) Study of Iron Box wiring and assembly
- f) Study of Fan Regulator (Resistor type and Electronic type using Diac/Triac/quadrac)
- g) Study of emergency lamp wiring/Water heater

PART III MECHANICAL ENGINEERING PRACTICES

WELDING WORK:

- a) Welding of Butt Joints, Lap Joints, and Tee Joints using arc welding.
- b) Practicing gas welding.

BASIC MACHINING WORK:

- a) (simple)Turning.
- b) (simple)Drilling.
- c) (simple)Tapping.

ASSEMBLY WORK:

- a) Assembling a centrifugal pump.
- b) Assembling a household mixer.
- c) Assembling an airconditioner.

SHEET METAL WORK:

a) Making of a square tray

FOUNDRY WORK:

a) Demonstrating basic foundry operations.

PART IV ELECTRONIC ENGINEERING PRACTICES SOLDERING WORK:

15

a) Soldering simple electronic circuits and checking continuity.

ELECTRONIC ASSEMBLY AND TESTING WORK:

a) Assembling and testing electronic components on a small PCB.

ELECTRONIC EQUIPMENT STUDY:

- a) Study an elements of smart phone.
- b) Assembly and dismantle of LED TV.
- c) Assembly and dismantle of computer/ laptop

TOTAL = 60 PERIODS

COURSE OUTCOMES:

Upon completion of this course, the students will be able to:

- 1. Draw pipe line plan; lay and connect various pipe fittings used in common household plumbing work; Saw; plan; make joints in wood materials used in common household wood work.
- 2. Wire various electrical joints in common household electrical wire work.
- 3. Weld various joints in steel plates using arc welding work; Machine various simple processes like turning, drilling, tapping in parts; Assemble simple mechanical assembly of common household equipments; Make a tray out of metal sheet using sheet metal work.
- 4. Solder and test simple electronic circuits; Assemble and test simple electronic components on PCB.

60						Р	O						PSO				
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
1	3	2			1	1	1					2	2	1	1		
2	3	2			1	1	1					2	2	1	1		
3	3	2			1	1	1					2	2	1	1		
Avg.	3	2			1	1	1					2	2	1	1		
Low (1)	\ ·	ledium	1 (2) ·	Hi	ah (3)												

15

BE3271 BASIC ELECTRICAL AND ELECTRONICS ENGINEERING LABORATORY

L T P C 0 0 4 2

COURSE OBJECTIVES:

- To train the students in conducting load tests on electrical machines
- To gain practical experience in characterizing electronic devices
- To train the students to use DSO for measurements.

LIST OF EXPERIMENTS

- 1. Verification of ohms and Kirchhoff's Laws.
- 2. Load test on DC Shunt Motor.
- 3. Load test on Self Excited DC Generator
- 4. Load test on Single phase Transformer
- 5. Load Test on Induction Motor
- 6. Characteristics of PN and Zener Diodes
- 7. Characteristics of BJT, SCR and MOSFET
- 8. Half wave and Full Wave rectifiers
- 9. Study of Logic Gates
- 10. Implementation of Binary Adder and Subtractor
- 11. Study of DSO

TOTAL: 60 PERIODS

COURSE OUTCOMES:

After completing this course, the students will be able to

- 1. Use experimental methods to verify the Ohm's and Kirchhoff's Laws.
- 2. Analyze experimentally the load characteristics of electrical machines
- 3. Analyze the characteristics of basic electronic devices
- 4. Use DSO to measure the various parameters

Mapping of COs with POs and PSOs															
COs/POs&P						PO	S						PS	Os	
SOs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	3	2	1	1			1.5	2						1
CO2	3	3	2	1	1			1.5	2						1
CO3	3	3	2	1	1			1.5	2						1
CO4	3	3	2	1	1			1.5	2						1
CO5	3	3	2	1	1			1.5	2						1
CO/PO &	3	3	2	1	1			1.5	2						1
PSO															
Average															
		1	– Slic	ıht. 2 -	– Mod	era	te.	3 – S	ubsta	ntial					

TOTAL: 60 PERIODS

OBJECTIVES

- To identify varied group discussion skills and apply them to take part in effective discussions in a professional context.
- To analyse concepts and problems and make effective presentations explaining them clearly and precisely.
- To be able to communicate effectively through formal and informal writing.
- To be able to use appropriate language structures to write emails, reports and essays
- To give instructions and recommendations that are clear and relevant to the context

UNIT I 12

Speaking-Role Play Exercises Based on Workplace Contexts, - talking about competition- discussing progress toward goals-talking about experiences- talking about events in life- discussing past events-Writing: writing emails (formal & semi-formal).

UNIT II 12

Speaking: discussing news stories-talking about frequency-talking about travel problems- discussing travel procedures- talking about travel problems- making arrangements-describing arrangements-discussing plans and decisions- discussing purposes and reasons- understanding common technology terms-Writing: - writing different types of emails.

UNIT III 12

Speaking: discussing predictions-describing the climate-discussing forecasts and scenarios- talking about purchasing-discussing advantages and disadvantages- making comparisons- discussing likes and dislikes- discussing feelings about experiences-discussing imaginary scenarios Writing: short essays and reports-formal/semi-formal letters.

UNIT IV 12

Speaking: discussing the natural environment-describing systems-describing position and movement-explaining rules-(example- discussing rental arrangements)- understanding technical instructions-Writing: writing instructions-writing a short article.

UNIT V 12

Speaking: describing things relatively-describing clothing-discussing safety issues (making recommendations) talking about electrical devices-describing controlling actions- Writing: job application (Cover letter + Curriculum vitae)-writing recommendations.

LEARNING OUTCOMES

At the end of the course, learners will be able

- Speak effectively in group discussions held in a formal/semi formal contexts.
- Discuss, analyse and present concepts and problems from various perspectives to arrive at suitable solutions
- Write emails, letters and effective job applications.
- Write critical reports to convey data and information with clarity and precision
- Give appropriate instructions and recommendations for safe execution of tasks

Assessment Pattern

- One online / app based assessment to test speaking and writing skills
- Proficiency certification is given on successful completion of speaking and writing.

CO-PO & PSO MAPPING

СО				PO									PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	3	3	3	1	3	3	3	3	3	3	3	-	-	-
2	2	3	3	3	1	3	3	3	3	3	3	3	-	-	-
3	2	2	3	3	1	3	3	3	3	3	3	3	-	-	-
4	3	3	3	3	3	3	3	3	3	3	3	3	-	-	-
5		3	3	3		3	3	3	3	3	3	3	-	-	-
	3				3										
AVg	2.4	2.8	3	3	1.8	3	3	3	3	3	3	3	-	-	-